import numpy as np
import matplotlib.pyplot as plt
from cnn_operations import cnn_operations as cnn_opr
convolutional_neural_network模块:
1. 卷积神经网络类
def __init__(self):
# 网络的层数
self.n_layers = 0
# list,网络中的各层
self.layers = []
# array,网络的输出
self.output = None
# 网络的代价
self.loss = None
# 权值的学习率
self.learning_rate_weight = 0.1
# 偏置的学习率
self.learning_rate_bias = 0.1
初始化网络结构相关属性,如层数、层列表;初始化输出、损失和学习率属性
层列表self.layers用于后续添加各层对象;输出self.output和损失self.loss记录训练过程中的值
def config(self, args):
self.n_layers = len(args)
prior_layer = None
for i in range(self.n_layers):
# 配置网络的各层
new_layer = cnn_layer(args[i][0])
if i > 0:
prior_layer = self.layers[-1]
# 当前层设为上一层的next_layer
self.layers[-1].next_layer = new_layer
new_layer.config(args[i][1], self.learning_rate_weight,
self.learning_rate_bias, prior_layer)
self.layers.append(new_layer)
return None
配置网络:
args: 元组,其中`args[i][0]`代表第i层的类型,类型包括 "input"(输入层)、"convoluting"(卷积
层)、"pooling"(池化层)、"full_connecting"(全连接层)和 "output"(输出层)。args[i][1]是一
个元组,包含第i层的配置参数。
函数的主要流程:
①获取args元组的长度,即网络的层数。
②进入循环,对每一层进行配置。先创建一个新的层new_layer,然后判断如果不是第一层,就把
前一层prior_layer设为新创建的层的前一层,并把前一层的`next_layer`设为新创建的层。
③配置新创建的层,参数包括第i层的配置参数,学习率,以及前一层的信息。
④将新创建的层添加到网络的层级列表中。
def _feed_forward(self, x):
# 输入层前向传播
self.layers[0].feed_forward(x)
# 其它各层前向传播
for i in range(1, self.n_layers):
self.layers[i].feed_forward(x)
# self.layers[-1].n_nodes * size_batch array,网络的输出
self.output = np.ndarray.flatten( \
np.array(self.layers[-1].output)).reshape( \
self.layers[-1].n_nodes, -1)
return None
前向传播:
x: 是一个3维数组,表示一个批次(batch)的输入图像。每个通道的尺寸为x.shape[0] *
x.shape[1],而x.shape[2]代表当前批次中图像的个数乘以每幅图像的通道数。
函数的主要流程:
①首先进行输入层的前向传播计算,输入参数为输入图像x。
②然后对从第二层开始的其他所有层进行前向传播计算,输入参数也为输入图像x。
③最后,将网络最后一层的输出进行降维处理,并保存到self.output中。这里,np.ndarray.flatten()
函数用于将一个多维数组转化为一维数组,np.reshape()函数用于改变数组的形状。
def _back_propagate(self, y):
# 输出层反向传播
self.layers[-1].back_propagate(y)
# 其它各层反向传播
for i in range(self.n_layers - 2, 0, -1):
self.layers[i].back_propagate()
return None
反向传播:
y: 数组,表示输入样本对应的类别标签。
函数的主要流程:
①首先进行输出层的反向传播计算,输入参数为类别标签`y`。
②然后对从倒数第二层开始的其他所有层进行反向传播计算,无需传入参数。
反向传播是神经网络训练的核心部分,它的目标是通过计算损失函数关于网络参数的梯度,
然后根据这个梯度来更新网络的参数。具体来说,反向传播过程首先计算输出层的误差,然后依次
向前一层一层传递,直到输入层,每经过一层都会根据该层的误差来更新该层的参数。
def fit(self, X, Y, size_batch=1, n_epochs=1):
self.size_batch = size_batch
# 训练样本个数 * 每幅图片的通道数
len_X = X.shape[-1]
len_Y = Y.shape[0]
# 每个epoch中batch的个数
n_batches = int(np.ceil(len_X / self.layers[0].n_nodes / size_batch))
loss = np.empty(n_epochs * n_batches)
for i_epoch in range(n_epochs):
print("Epoch: ", end="")
print(i_epoch)
for i_batch in range(n_batches):
print("\tBatch: ", end="")
print(i_batch, end="\t")
y_offset = i_batch * size_batch
x_offset = y_offset * self.layers[0].n_nodes
# 将类别标签转换为向量
y = np.zeros([self.layers[-1].n_nodes, size_batch])
for i in range(size_batch):
if i > len_Y - y_offset - 1:
y = y[:, :, : i]
break
y[Y[y_offset + i], i] = 1
self._feed_forward(X[:, :, x_offset: x_offset + size_batch * \
self.layers[0].n_nodes])
loss[i_epoch * n_batches + i_batch] = \
cnn_opr.calc_loss(y.T, self.output.T)
print("loss = ", end="")
print(loss[i_epoch * n_batches + i_batch])
self._back_propagate(y)
self.loss = loss
plt.figure()
plt.plot(loss, "r-")
plt.xlabel("Batches")
plt.ylabel("Loss")
plt.grid()
plt.show()
return None
训练卷积神经网络:
X: 3维数组,表示训练集。其中,X[:, :, i: i + self.layers[0].n_nodes]表示一个训练样本(图
片),self.layers[0].n_nodes即为每幅图片的通道数。
Y: 数组,表示训练集对应的类别标签。
size_batch: 一个批次(batch)中训练样本的个数。
n_epochs: 训练的迭代次数。
函数的主要流程:
①计算每个周期(epoch)中批次的个数,并创建一个空的损失数组用于存储每个批次的损失值。
②开始训练,对每个周期和每个批次进行循环。
③对于每个批次,首先获取该批次的输入图像和对应的类别标签,然后将类别标签转换为向量形式
(one-hot encoding)。
④然后执行前向传播,计算网络的输出,并计算损失值。损失值是真实标签和网络输出之间的差
异,通常用于评估网络的性能。
⑤接着执行反向传播,更新网络的参数。
⑥最后,将每个批次的损失值存储起来,并在训练结束后绘制损失值的变化图。
使用随机梯度下降方法训练卷积神经网络,通过循环迭代和反向传播,逐渐优化网络的参
数,使得网络的输出能够尽可能接近真实的标签,从而提高网络的性能。
def test(self, X, Y):
n_correct = 0
for i in range(0, X.shape[-1], self.layers[0].n_nodes):
print("Test case: ", end="")
print(i)
y_predict = self.predict(X[:, :, i: i + self.layers[0].n_nodes])
if y_predict == Y[i]:
n_correct += 1
correct_rate = n_correct / X.shape[-1]
return correct_rate
用于测试卷积神经网络的性能:
X: 3维数组,表示测试集。其中,X[:, :, i: i + self.layers[0].n_nodes]表示一个测试样本(图
片),self.layers[0].n_nodes即为每幅图片的通道数。
Y: 数组,表示测试集对应的类别标签。
函数的主要流程:
①初始化正确分类的样本数为0。
②对每个测试样本进行循环,对每个样本进行预测,并与真实标签进行比较。如果预测正确,则正
确分类的样本数加1。
③计算并返回测试集的分类正确率,即正确分类的样本数除以总样本数。
def predict(self, x):
self._feed_forward(x.reshape(x.shape[0], x.shape[1], -1))
# 根据网络输出层的类型,判定输入图像的类别
if self.layers[-1].type_output is "softmax":
y_predict = np.argmax(self.output[:, 0])
elif self.layers[-1].type_output is "rbf":
# TODO:
pass
return y_predict
用于预测输入样本的类别:
x: 2维或3维数组,表示输入样本(图像)。
函数的主要流程:
①对输入样本进行前向传播计算,得到网络的输出。
②根据网络输出层的类型,判断输入图像的类别。如果输出层的类型是"softmax",则选择输出向
量中值最大的元素对应的索引作为类别标签。如果输出层的类型是"rbf",目前该部分还未实现,需
要补充相应的代码。
③函数返回预测出的输入样本的类别。
2. 卷积神经网络中的一层(类)cnn_layer
def __init__(self, type_layer):
# 当前层的类型
self.type = type_layer
# 当前层中神经元的个数
self.n_nodes = 0
# list,当前层中各神经元
self.nodes = []
# 当前层的上一层
self.prior_layer = None
# 当前层的下一层
self.next_layer = None
# list,当前层的输出
self.output = []
# 权值的学习率
self.learning_rate_weight = 0.0
# 偏置的学习率
self.learning_rate_bias = 0.0
if self.type is "input":
# array,输入图像(每个通道)的尺寸
self.size_input = None
elif self.type is "convoluting":
# 2-d array,当前层与上一层各神经元的连接矩阵
self.connecting_matrix = None
# array,卷积核尺寸
self.size_conv_kernel = None
# 卷积核步长
self.stride_conv_kernel = 1
# 边缘补零的宽度
self.padding_conv = 0
# 激活函数类型,{"relu", "sigmoid", "tanh", None}
self.type_activation = None
elif self.type is "pooling":
# 池化核类型,{"max", "average"}
self.type_pooling = "max"
# array,池化核尺寸
self.size_pool_kernel = np.array([2, 2])
# 池化核步长
self.stride_pool_kernel = 2
# 边缘补零的宽度
self.padding_pool = 0
# 激活函数类型,{"relu", "sigmoid", "tanh", None}
self.type_activation = None
elif self.type is "full_connecting":
# 激活函数类型,{"relu", "sigmoid", "tanh", None}
self.type_activation = None
elif self.type is "output":
# 输出层类型,{"softmax", "rbf"}
self.type_output = "softmax"
type_layer: 当前层的类型,可以是"input"(输入层)、"convoluting"(卷积
层)、"pooling"(池化层)、"full_connecting"(全连接层)或"output"(输出层)。
首先,根据层的类型初始化共享的属性,如神经元个数、神经元列表、前一层、后一层、输
出、权值学习率和偏置学习率等。
然后,根据层的类型初始化特定的属性。例如,如果层的类型是"input",则初始化输入图像的
尺寸;如果层的类型是"convoluting",则初始化连接矩阵、卷积核尺寸、卷积核步长、边缘补零的
宽度和激活函数类型等。
def config(self, args, learning_rate_weight, learning_rate_bias,
prior_layer=None):
self.prior_layer = prior_layer
self.learning_rate_weight = learning_rate_weight
self.learning_rate_bias = learning_rate_bias
if self.type is "input":
size_input, = args
# 输入图像为单通道
if size_input.shape[0] == 2:
self.n_nodes = 1
self.size_input = size_input
# 输入图像为多通道
elif size_input.shape[0] == 3:
# 每个神经元一个通道
self.n_nodes = size_input[-1]
# 输入图像每个通道的尺寸
self.size_input = size_input[ : 2]
self._config_input(self.size_input)
elif self.type is "convoluting":
connecting_matrix, size_conv_kernel, \
stride_conv_kernel, padding_conv, type_activation = args
self.connecting_matrix = connecting_matrix
self.n_nodes = connecting_matrix.shape[1]
self.size_conv_kernel = size_conv_kernel
self.stride_conv_kernel = stride_conv_kernel
self.padding_conv = padding_conv
self.type_activation = type_activation
self._config_convoluting(connecting_matrix, size_conv_kernel,
stride_conv_kernel, padding_conv,
type_activation)
elif self.type is "pooling":
type_pooling, size_pool_kernel, \
stride_pool_kernel, padding_pool, type_activation = args
# 池化层神经元个数与上一层卷积层(或激活层)神经元个数相同
self.n_nodes = self.prior_layer.n_nodes
self.type_pooling = type_pooling
self.size_pool_kernel = size_pool_kernel
self.stride_pool_kernel = stride_pool_kernel
self.ppadding_pool = padding_pool
self.type_activation = type_activation
self._config_pooling(type_pooling, size_pool_kernel,
stride_pool_kernel, padding_pool,
type_activation)
elif self.type is "full_connecting":
n_nodes, type_activation = args
self.n_nodes = n_nodes
self.type_activation = type_activation
self._config_full_connecting(n_nodes, type_activation)
elif self.type is "output":
n_nodes, type_output = args
self.n_nodes = n_nodes
self.type_output = type_output
self._config_output(n_nodes, type_output)
# 初始化权值
self._initialize()
return None
配置神经网络的各层:
args: 元组,包含当前层的配置参数。
learning_rate_weight: 权值的学习率。
learning_rate_bias: 偏置的学习率。
prior_layer: 当前层的上一层,默认值为None。
函数的主要流程:
①设置当前层的上一层以及权值和偏置的学习率。
②根据当前层的类型配置对应的参数。例如,如果当前层为"input"(输入层),则设置输入图像的
尺寸和通道数。如果当前层为"convoluting"(卷积层),则设置连接矩阵、卷积核尺寸和步长、边
缘补零的宽度以及激活函数类型等。
③调用_initialize()方法初始化权值。
def _config_input(self, size_input):
for i in range(self.n_nodes):
new_node = cnn_node(self.type)
args = (size_input,)
new_node.config(args)
self.nodes.append(new_node)
return None
配置神经网络的输入层:
size_input: 数组,输入图像(每个通道)的尺寸。
函数的主要流程:
①通过遍历输入通道的数量,对每个通道创建一个新的神经元节点。
②使用输入尺寸参数调用每个节点的`config`方法进行配置。
③将配置好的节点添加到当前层的节点列表中。
def _config_convoluting(self, connecting_matrix, size_conv_kernel,
stride_conv_kernel, padding_conv, type_activation):
for i in range(self.n_nodes):
new_node = cnn_node(self.type)
# 上一层中与当前神经元连接的神经元
nodes_prior_layer = []
for j in range(connecting_matrix.shape[0]):
if connecting_matrix[j, i] == 1:
nodes_prior_layer.append(self.prior_layer.nodes[j])
# 当前神经元添加至上一层中与之连接的神经元的nodes_next_layer
self.prior_layer.nodes[j].nodes_next_layer.append(new_node)
args = (nodes_prior_layer, size_conv_kernel, stride_conv_kernel,
padding_conv, type_activation)
new_node.config(args)
self.nodes.append(new_node)
return None
用于配置神经网络的卷积层:
connecting_matrix: M * N数组,M为上一层神经元个数,N为当前层神经元个数,
connecting_matrix[m, n]为1表示上一层第m个神经元与当前层第n个神经元连接,为0表示不连接。
size_conv_kernel: 数组,卷积核尺寸。
stride_conv_kernel: 卷积核步长。
padding_conv: 边缘补零的宽度。
type_activation: 激活函数类型,可以是"relu"(修正线性单元)、"sigmoid"(S型曲
线)、"tanh"(双曲正切函数)或None。
函数的主要流程:
①遍历当前层的所有神经元。
②对于每个神经元,找出上一层与之连接的神经元,并将当前神经元添加到这些神经元的
nodes_next_layer列表中。
③调用每个神经元的`config`方法,使用给定的参数进行配置。
④将配置好的神经元添加到当前层的nodes列表中。
def _config_pooling(self, type_pooling, size_pool_kernel,
stride_pool_kernel, padding_pool, type_activation):
for i in range(self.n_nodes):
new_node = cnn_node(self.type)
# 上一层中与当前神经元连接的神经元
nodes_prior_layer = self.prior_layer.nodes[i]
# 当前神经元添加至上一层中与之连接的神经元的nodes_next_layer
self.prior_layer.nodes[i].nodes_next_layer.append(new_node)
args = (nodes_prior_layer, type_pooling, size_pool_kernel,
stride_pool_kernel, padding_pool, type_activation)
new_node.config(args)
self.nodes.append(new_node)
return None
配置神经网络的池化层:
type_pooling: 池化核类型,可以是"max"(最大池化)或"average"(平均池化)。
size_pool_kernel: 数组,池化核尺寸。
stride_pool_kernel: 池化核步长。
padding_pool: 边缘补零的宽度。
type_activation: 激活函数类型,可以是"relu"(修正线性单元)、"sigmoid"(S型曲
线)、"tanh"(双曲正切函数)或None。
函数的主要流程:
①遍历当前层的所有神经元。
②对于每个神经元,找出上一层与之相对应的神经元,并将当前神经元添加到这个神经元的
nodes_next_layer列表中。
③调用每个神经元的config方法,使用给定的参数进行配置。
④将配置好的神经元添加到当前层的nodes列表中。
def _config_full_connecting(self, n_nodes, type_activation):
# 上一层中所有神经元与当前层中每个经元连接
nodes_prior_layer = self.prior_layer.nodes
args = (nodes_prior_layer, type_activation)
# 上一层中神经元的个数
n_nodes_prior_layer = len(nodes_prior_layer)
for i in range(n_nodes):
new_node = cnn_node(self.type)
# 当前神经元添加至上一层中每个神经元的nodes_next_layer
for j in range(n_nodes_prior_layer):
self.prior_layer.nodes[j].nodes_next_layer.append(new_node)
new_node.config(args)
self.nodes.append(new_node)
return None
配置神经网络的全连接层:
n_nodes: 全连接层中神经元的个数。
type_activation: 激活函数类型,可以是"relu"(修正线性单元)、"sigmoid"(S型曲
线)、"tanh"(双曲正切函数)或`None`。
函数的主要流程:
①获取上一层的所有神经元。
②对于全连接层中的每个神经元,将其添加到上一层每个神经元的`nodes_next_layer`列表中。
③调用每个神经元的`config`方法,使用给定的参数进行配置。
def _config_output(self, n_nodes, type_output):
# 上一层中所有神经元与当前层中每个经元连接
nodes_prior_layer = self.prior_layer.nodes
args = (nodes_prior_layer, type_output)
# 上一层中神经元的个数
n_nodes_prior_layer = len(nodes_prior_layer)
for i in range(n_nodes):
new_node = cnn_node(self.type)
# 当前神经元添加至上一层中每个神经元的nodes_next_layer
for j in range(n_nodes_prior_layer):
self.prior_layer.nodes[j].nodes_next_layer.append(new_node)
new_node.config(args)
self.nodes.append(new_node)
return None
配置神经网络的输出层:
n_nodes: 输出层中神经元的个数,也就是类别的数目。
type_output: 输出层的类型,可以是"softmax"或"rbf"(径向基函数)。
函数的主要流程:
①获取上一层的所有神经元。
②对于输出层中的每个神经元,将其添加到上一层每个神经元的nodes_next_layer列表中。
③调用每个神经元的config方法,使用给定的参数进行配置。
def _initialize(self):
if self.type is "convoluting":
self._initialize_convoluting()
elif self.type is "full_connecting":
self._initialize_full_connecting()
elif self.type is "output":
self._initialize_output()
return None
Xavier初始化方法:
检查当前层的类型,然后对该层进行相应的初始化操作。如果类型是"convoluting",则调用
_initialize_convoluting方法进行卷积层的初始化。如果类型是"full_connecting",则调用
_initialize_full_connecting方法进行全连接层的初始化。如果类型是"output",则调用
_initialize_output方法进行输出层的初始化。
def _initialize_convoluting(self):
fan_out = self.n_nodes * np.prod(self.size_conv_kernel)
if self.prior_layer.type is "input":
fan_in = self.prior_layer.n_nodes * np.prod(self.size_conv_kernel)
u = np.sqrt(6 / (fan_in + fan_out))
for i in range(self.n_nodes):
for j in range(self.nodes[i].n_conv_kernels):
self.nodes[i].conv_kernels[j] = u * 2 * \
(np.random.rand(self.size_conv_kernel[0],
self.size_conv_kernel[1]) - 0.5)
elif self.prior_layer.type is "pooling":
for i in range(self.n_nodes):
fan_in = np.sum(self.connecting_matrix[:, i]) * \
np.prod(self.size_conv_kernel)
u = np.sqrt(6 / (fan_in + fan_out))
for j in range(self.nodes[i].n_conv_kernels):
self.nodes[i].conv_kernels[j] = u * 2 * \
(np.random.rand(self.size_conv_kernel[0],
self.size_conv_kernel[1]) - 0.5)
return None
初始化神经网络的卷积层:
计算出fan_out(输出值的个数)。
根据前一层的类型,分别计算出fan_in(输入值的个数)并初始化卷积核权重。如果前一层
是"input",则直接用前一层的神经元个数和卷积核大小计算出fan_in。如果前一层是"pooling",则
需要用连接矩阵和卷积核大小来计算fan_in。
根据Xavier初始化方法,用fan_in和fan_out来计算一个因子u,然后用这个因子u来初始化当
前层神经元的每个卷积核。
函数中用到的变量如下:
self.n_nodes:当前层神经元的个数。
self.size_conv_kernel:卷积核的大小。
self.prior_layer:前一层。
self.nodes:当前层的所有神经元。
self.connecting_matrix:当前层与前一层的连接矩阵。
def _initialize_full_connecting(self):
fan_in = self.prior_layer.n_nodes
fan_out = self.n_nodes
u = np.sqrt(6 / (fan_in + fan_out))
for i in range(self.n_nodes):
self.nodes[i].weights = u * 2 * (np.random.rand(fan_in) - 0.5)
return None
初始化神经网络的全连接层:
计算fan_in(输入的数量),这个值等于前一层的神经元数量。计算fan_out(输出的数量),这个
值等于当前层的神经元数量。根据Xavier初始化方法,计算一个因子u,这个因子用来初始化当前
层神经元的权重。对于全连接层的每个神经元,都用这个因子u来初始化它的权重。
def _initialize_output(self):
self._initialize_full_connecting()
return None
用于初始化神经网络的输出层。
def feed_forward(self, inputs=None):
if self.type is "input":
self._feed_forward_input(inputs)
elif self.type is "output":
self._feed_forward_output()
else:
self.output = []
for i in range(self.n_nodes):
# 当前层中每个神经元前向传播
self.nodes[i].feed_forward()
self.output.append(self.nodes[i].output)
return None
首先检查当前层的类型。如果当前层是输入层,调用_feed_forward_input
方法进行前向传播。如
果当前层是输出层,调用_feed_forward_output
方法进行前向传播。如果当前层既不是输入层也不
是输出层,那么对当前层的每个神经元进行前向传播,并将每个神经元的输出添加到self.output
列表中。
def _feed_forward_input(self, inputs):
self.output = []
# 输入图像为单通道,此时inputs[:, :, i]为每幅图像
if self.n_nodes == 1:
self.nodes[0].feed_forward(inputs)
self.output.append(self.nodes[0].output)
# 输入图像为多通道,此时inputs[:, :, i: i + 3]为每幅图像
elif self.n_nodes > 1:
for i in range(self.n_nodes):
self.nodes[i].feed_forward(inputs[:, :, i: : self.n_nodes])
self.output.append(self.nodes[i].output)
return None
初始化输出列表self.output,
如果输入层神经元数量为1(即输入图像为单通道),那么直接对该
神经元进行前向传播,并将其输出添加到self.output
列表中。如果输入层神经元数目大于1(即输
入图像为多通道),那么对每个神经元进行前向传播,并将每个神经元的输出添加到self.output
列表中。
def _feed_forward_output(self):
if self.type_output is "softmax":
# 输出层第一个神经元前向传播
self.nodes[0].feed_forward()
# size_batch * self.n_nodes array
combinations = np.empty([self.nodes[0].combination.shape[-1],
self.n_nodes])
combinations[:, 0] = self.nodes[0].combination.reshape(-1)
# 输出层其它神经元前向传播
for i in range(1, self.n_nodes):
self.nodes[i].feed_forward()
combinations[:, i] = self.nodes[i].combination.reshape(-1)
# $e^{w_j^T x}, \forall j$
exp_combinations = np.exp(combinations)
# $\sum_{j = 1}^n e^{w_j^T x}$
sum_exp = np.sum(exp_combinations, axis=1)
self.output = []
for i in range(self.n_nodes):
# 输出层神经元的output为size_batch array
# $\frac{e^{w_i^T x}}{\sum_{j = 1}^n e^{w_j^T x}}$
self.nodes[i].output = exp_combinations[:, i] / sum_exp
self.output.append(self.nodes[i].output)
elif self.type_output is "rbf":
# TODO:
pass
return None
检查输出层的类型,如果是"softmax"类型,执行以下步骤:
对输出层的第一个神经元进行前向传播。
初始化一个空数组combinations
,用于存储输出层各神经元的组合值。
对输出层的其它神经元进行前向传播,并将每个神经元的组合值存储到combinations
数组中。
计算exp_combinations
,即对combinations
中的每个元素求指数。
计算sum_exp
,即exp_combinations
中的元素按列求和。
最后,计算每个神经元的输出,公式为 ,并将每个神经元的输出添加到
self.output
列表中。
def back_propagate(self, y=None):
if self.type is "convoluting":
self._back_propagate_convoluting()
elif self.type is "pooling":
self._back_propagate_pooling()
elif self.type is "full_connecting":
self._back_propagate_full_connecting()
elif self.type is "output":
self._back_propagate_output(y)
return None
首先检查当前层的类型。如果当前层是卷积层,调用_back_propagate_convoluting
方法进行反向
传播。如果当前层是池化层,调用_back_propagate_pooling
方法进行反向传播。如果当前层是全
连接层,调用_back_propagate_full_connecting
方法进行反向传播。如果当前层是输出层,调用
_back_propagate_output
方法进行反向传播。
def _back_propagate_convoluting(self):
if self.next_layer.type is "pooling":
self._bp_pooling_to_convoluting()
elif self.next_layer.type is "full_connecting":
self._bp_full_connecting_to_convoluting()
elif self.next_layer.type is "output":
self._bp_output_to_convoluting()
return None
首先检查当前层的下一层的类型。如果下一层是池化层,调用_bp_pooling_to_convoluting
方法进
行反向传播。如果下一层是全连接层,调用_bp_full_connecting_to_convoluting
方法进行反向传
播。如果下一层是输出层,调用_bp_output_to_convoluting
方法进行反向传播。
def _bp_pooling_to_convoluting(self):
# TODO:
if self.type_activation is None:
pass
elif self.type_activation is "relu":
pass
elif self.type_activation is "sigmoid":
for i in range(self.n_nodes):
# 下一层(池化层)中与当前(卷积层)神经元连接的神经元只有一个
node_next_layer = self.nodes[i].nodes_next_layer[0]
# 池化层中一个神经元只有一个权值
# TODO: 下一层池化类型为"max"时
delta_padded = node_next_layer.weights[0] * \
cnn_opr.upsample_pool(node_next_layer.delta[:, :, 0],
node_next_layer.type_pooling,
node_next_layer.size_pool_kernel,
node_next_layer.stride_pool_kernel)
size_delta_padded = delta_padded.shape
delta = np.zeros(self.nodes[i].output.shape)
delta[ : size_delta_padded[0], : size_delta_padded[1], 0] = \
delta_padded
for j in range(1, delta.shape[-1]):
delta[ : size_delta_padded[0], : size_delta_padded[1], j] = \
node_next_layer.weights[0] * \
cnn_opr.upsample_pool(node_next_layer.delta[:, :, j],
node_next_layer.type_pooling,
node_next_layer.size_pool_kernel,
node_next_layer.stride_pool_kernel)
self.nodes[i].delta = delta * \
(self.nodes[i].output - self.nodes[i].output**2)
# 更新当前神经元的权值,即当前神经元的各卷积核
for j in range(self.nodes[i].n_conv_kernels):
# 卷积层的上一层可能为池化层或输入层
delta_k = 0.0
for iter_in_batch in range(delta.shape[-1]):
delta_k += cnn_opr.inv_conv_2d( \
self.nodes[i].nodes_prior_layer[j].output[ \
:, :, iter_in_batch],
self.size_conv_kernel,
self.stride_conv_kernel,
self.padding_conv,
self.nodes[i].delta[:, :, iter_in_batch])
delta_k /= delta.shape[-1]
self.nodes[i].conv_kernels[j] -= \
self.learning_rate_weight * delta_k
# 更新当前神经元的偏置
self.nodes[i].bias -= self.learning_rate_bias * \
np.sum(self.nodes[i].delta) / delta.shape[-1]
elif self.type_activation is "tanh":
pass
return None
首先检查当前层的激活函数类型。如果激活函数类型是"sigmoid",执行以下步骤:
对当前层的每个神经元进行处理。由于池化层中与当前卷积层神经元连接的神经元只有一个,所以
直接取出与之相连的池化层神经元node_next_layer
。
对node_next_layer
的误差进行上采样,将其扩大到与当前神经元输出相同的尺寸,得到
delta_padded
。将delta_padded
中的误差传播到当前神经元的误差delta
中。
计算当前神经元的误差,公式为更新当前神经元
的权值,即卷积核的值。
对于每个卷积核,计算其对应的误差delta_k
,然后根据学习率和delta_k
更新卷积核的值。
更新当前神经元的偏置,公式为 ,其中n为
delta
的最后一个维度的大小。
def _bp_full_connecting_to_convoluting(self):
# TODO:
if self.type_activation is None:
pass
elif self.type_activation is "relu":
pass
elif self.type_activation is "sigmoid":
for i in range(self.n_nodes):
delta = 0.0
for j in range(len(self.nodes[i].nodes_next_layer)):
# 全连接层神经元的delta为size_batch array
delta += self.nodes[i].nodes_next_layer[j].weights[i] * \
self.nodes[i].nodes_next_layer[j].delta
delta *= (self.nodes[i].output[0, 0, :] -
self.nodes[i].output[0, 0, :]**2)
delta = delta.reshape(1, 1, -1)
self.nodes[i].delta = delta
# 更新当前神经元的权值,即当前神经元的各卷积核
for j in range(self.nodes[i].n_conv_kernels):
# 卷积层的上一层可能为池化层或输入层
delta_k = 0.0
for iter_in_batch in range(delta.shape[-1]):
delta_k += cnn_opr.inv_conv_2d( \
self.nodes[i].nodes_prior_layer[j].output[ \
:, :, iter_in_batch],
self.size_conv_kernel,
self.stride_conv_kernel,
self.padding_conv,
self.nodes[i].delta[:, :, iter_in_batch])
delta_k /= delta.shape[-1]
self.nodes[i].conv_kernels[j] -= \
self.learning_rate_weight * delta_k
# 更新当前神经元的偏置
# self.nodes[i].delta实际上为1 * 1 * size_batch array
self.nodes[i].bias -= self.learning_rate_bias * \
np.sum(self.nodes[i].delta) / delta.shape[-1]
elif self.type_activation is "tanh":
pass
return None
卷积层到全连接层的反向传播实现:
delta的计算:对每个卷积层神经元i,需要遍历全连接层所有的后继神经元j,将j的delta按权重回传,并结
合本层激活函数的导数计算delta。
卷积核的更新:对每个卷积核j,遍历每个样本,进行反卷积操作,并将所有样本的反卷积结果求平均作
为该卷积核的梯度,以此更新卷积核。
偏置的更新:将每个样本的delta求平均就可以得到偏置的梯度,以此更新偏置。
激活函数的处理:relu和sigmoid激活函数的导数计算不同,需要针对性实现。
reshape和维度对应:计算delta和更新参数时需要注意reshape,保证维度一致。
def _bp_output_to_convoluting(self):
self._bp_full_connecting_to_convoluting()
return None
def _back_propagate_pooling(self):
if self.next_layer.type is "convoluting":
self._bp_convoluting_to_pooling()
elif self.next_layer.type is "full_connecting":
self._bp_full_connecting_to_pooling()
elif self.next_layer.type is "output":
self._bp_output_to_pooling()
return None
卷积层和池化层的反向传播实现:
_bp_output_to_convoluting()函数表示当前层为卷积层,下一层为输出层时的反向传播情况。
_back_propagate_pooling()函数实现了池化层的反向传播。它会根据池化层的下一层类型来调用
不同的反向传播函数:
如果下一层是卷积层,调用 _bp_convoluting_to_pooling();如果下一层是全连接层,调用
_bp_full_connecting_to_pooling(),如果下一层是输出层,调用_bp_output_to_pooling(),实际上也
会调用到_bp_full_connecting_to_pooling()。
def _bp_convoluting_to_pooling(self):
# TODO:
if self.type_activation is None:
pass
elif self.type_activation is "relu":
pass
elif self.type_activation is "sigmoid":
index_kernel = -1
for j in range(self.next_layer.connecting_matrix.shape[0]):
if self.next_layer.connecting_matrix[j, 0] == 1:
index_kernel += 1
if index_kernel == 0:
delta_padded = cnn_opr.upsample_conv_2d( \
self.next_layer.nodes[0].delta[:, :, 0],
self.next_layer.nodes[0].conv_kernels[index_kernel],
self.next_layer.nodes[0].size_conv_kernel,
self.next_layer.nodes[0].stride_conv_kernel)
for n in range(self.n_nodes):
self.nodes[n].delta = np.zeros([ \
delta_padded.shape[0],
delta_padded.shape[1],
self.next_layer.nodes[0].delta.shape[-1]])
self.nodes[j].delta[:, :, 0] = delta_padded
for iter_in_batch in range(1,
self.next_layer.nodes[0].delta.shape[-1]):
self.nodes[j].delta[:, :, iter_in_batch] += \
cnn_opr.upsample_conv_2d( \
self.next_layer.nodes[0].delta[ \
:, :, iter_in_batch],
self.next_layer.nodes[0].conv_kernels[ \
index_kernel],
self.next_layer.nodes[0].size_conv_kernel,
self.next_layer.nodes[0].stride_conv_kernel)
elif index_kernel > 0:
for iter_in_batch in range( \
self.next_layer.nodes[0].delta.shape[-1]):
self.nodes[j].delta[:, :, iter_in_batch] += \
cnn_opr.upsample_conv_2d( \
self.next_layer.nodes[0].delta[ \
:, :, iter_in_batch],
self.next_layer.nodes[0].conv_kernels[ \
index_kernel],
self.next_layer.nodes[0].size_conv_kernel,
self.next_layer.nodes[0].stride_conv_kernel)
for i in range(1, self.next_layer.connecting_matrix.shape[1]):
# 卷积层中每个神经元可能与上一层中多个神经元连接,
# 即卷积层中的神经元可能有多个卷积核
# 下一层(卷积层)中与当前神经元连接的神经元的卷积核的索引
index_kernel = -1
for j in range(self.next_layer.connecting_matrix.shape[0]):
# 下一层的第i个神经元与当前层的第j个神经元连接,
# 将下一层第i个神经元的delta传递至当前层第j个神经元
if self.next_layer.connecting_matrix[j, i] == 1:
index_kernel += 1
for iter_in_batch in range( \
self.next_layer.nodes[i].delta.shape[-1]):
self.nodes[j].delta[:, :, iter_in_batch] += \
cnn_opr.upsample_conv_2d( \
self.next_layer.nodes[i].delta[ \
:, :, iter_in_batch],
self.next_layer.nodes[i].conv_kernels[ \
index_kernel],
self.next_layer.nodes[i].size_conv_kernel,
self.next_layer.nodes[i].stride_conv_kernel)
for i in range(self.n_nodes):
# 令delta与output尺寸相同
delta = np.zeros(self.nodes[i].output.shape)
size_delta_padded = self.nodes[i].delta.shape
delta[ : size_delta_padded[0], : size_delta_padded[1], :] += \
self.nodes[i].delta
self.nodes[i].delta = delta * \
(self.nodes[i].output - self.nodes[i].output**2)
# 更新当前神经元的权值
# $\frac{\partial loss}{\partial w} = \sum{\delta \dot z}$
# 池化层中每个神经元只有一个权值
self.nodes[i].weights[0] -= self.learning_rate_weight * \
np.sum(self.nodes[i].delta * self.nodes[i].combination) / \
self.nodes[i].delta.shape[-1]
# 更新当前神经元的偏置
# $\frac{\partial loss}{\partial b} = \sum{\delta}$
self.nodes[i].bias -= self.learning_rate_bias * \
np.sum(self.nodes[i].delta) / self.nodes[i].delta.shape[-1]
elif self.type_activation is "tanh":
pass
return None
当前层为池化层,下一层为卷积层时的反向传播逻辑:
①根据下一层(卷积层)的delta,通过上采样进行反卷积,得到本层的delta。
②将得到的delta调整形状匹配本层输出,然后乘以激活函数的导数。
③使用delta和combination更新当前层神经元的权重和偏置。
④对不同的激活函数类型(ReLU、sigmoid、tanh),计算delta时有略微不同。
具体来说:通过遍历下一层的连接矩阵,确定下一层每个神经元对应的卷积核,对下一层每个
神经元的delta进行上采样反卷积,得到与当前层形状匹配的delta,将delta乘以激活函数的导数作为
当前层的delta,使用delta更新当前层中每个神经元的权重和偏置。
def _bp_full_connecting_to_pooling(self):
# TODO:
if self.type_activation is None:
pass
elif self.type_activation is "relu":
pass
elif self.type_activation is "sigmoid":
for i in range(self.n_nodes):
delta = 0.0
for j in range(len(self.nodes[i].nodes_next_layer)):
delta += self.nodes[i].nodes_next_layer[j].weights[i] * \
self.nodes[i].nodes_next_layer[j].delta
delta *= (self.nodes[i].output[0, 0, :] - \
self.nodes[i].output[0, 0, :]**2)
self.nodes[i].delta = delta.reshape(1, 1, -1)
# 更新当前神经元的权值
self.nodes[i].weights[0] -= self.learning_rate_weight * \
np.sum(self.nodes[i].delta * self.nodes[i].combination) / \
self.nodes[i].shape[-1]
# 更新当前神经元的偏置
self.nodes[i].bias -= self.learning_rate_bias * \
np.sum(self.nodes[i].delta) / self.nodes[i].delta.shape[-1]
elif self.type_activation is "tanh":
pass
return None
当前层为池化层,下一层为全连接层时的反向传播实现:
①初始化当前层每个节点的delta为0
②遍历当前层每个节点:对下一层每个连接到当前节点的全连接层节点,累加其权重与delta的乘积到
当前节点的delta;将delta乘以当前节点激活函数的导数作为当前节点的最终delta;将delta调整形
状为1×1×batch_size。
③使用计算得到的delta更新当前节点的权重和偏置
④对不同的激活函数,计算delta时略有不同
主要思路是:利用全连接层传入的delta,计算当前池化层节点的delta,更新当前池化层节点的参
数,依据不同的激活函数计算delta的细节不同。
def _bp_output_to_pooling(self):
self._bp_full_connecting_to_pooling()
return None
def _back_propagate_full_connecting(self):
# TODO:
if self.type_activation is None:
pass
elif self.type_activation is "relu":
pass
elif self.type_activation is "sigmoid":
for i in range(self.n_nodes):
# 计算当前神经元的灵敏度
delta = 0.0
for j in range(len(self.nodes[i].nodes_next_layer)):
# (认为全连接层的下一层为全连接层或输出层)
delta += self.nodes[i].nodes_next_layer[j].weights[i] * \
self.nodes[i].nodes_next_layer[j].delta
# 对于sigmoid,$f'(z) = f(z) (1 - f(z))$
delta *= (self.nodes[i].output[0, 0, :] - \
self.nodes[i].output[0, 0, :]**2)
self.nodes[i].delta = delta
# 更新当前神经元的权值
for j in range(len(self.nodes[i].nodes_prior_layer)):
# 全连接层的上一层(卷积层)的输出为一个向量,
# 即上一层中每个神经元的output为1 * 1 * size_batch array
self.nodes[i].weights[j] -= \
self.learning_rate_weight * \
np.mean(self.nodes[i].delta * \
self.nodes[i].nodes_prior_layer[j].output[0, 0, :])
# 更新当前神经元的偏置
self.nodes[i].bias -= \
self.learning_rate_bias * np.mean(self.nodes[i].delta)
elif self.type_activation is "tanh":
pass
return None
全连接层的反向传播实现:
①初始化每个节点的delta为0
②遍历每个节点:累加连接到下一层每个节点的delta乘以权重,计算当前节点的delta,对sigmoid,
将delta乘以激活函数的导数f'(z) = f(z)(1-f(z))。
③使用计算得到的delta更新当前节点:对连接到上一层每个节点,使用delta和上一层节点output更
新权重,使用delta更新偏置。
④对tanh激活,计算delta的方式稍有不同
def _back_propagate_output(self, y):
if self.type_output is "softmax":
# self.n_nodes * size_batch array
delta_y = np.array(self.output).reshape(self.n_nodes, -1) - y
# 计算输出层各神经元的灵敏度,并更新权值和偏置
for i in range(self.n_nodes):
# $\delta_i^{(L)} = (\tilde{y}_i - y_i) f'(z_i^{(L)})$
# $z_i^{(L)} = (w_i^{(L)})^T x^{(L - 1)} + b_i^{(L)}$
# 对于softmax,$f'(z) = f(z) (1 - f(z))$
# 输出层各神经元的output实际上为$f(z)$
self.nodes[i].delta = \
delta_y[i, :] * (self.output[i] - self.output[i]**2)
# 更新输出层当前神经元的权值
# $w' = w - \eta \frac{\partial loss}{\partial w}$
# $\frac{\partial loss}{\partial w} = \delta z^{(L - 1)}$
for j in range(len(self.nodes[i].nodes_prior_layer)):
# 输出层的上一层为全连接层
# 全连接层的output为1 * 1 * size_batch array
self.nodes[i].weights[j] -= \
self.learning_rate_weight * \
np.mean(self.nodes[i].delta * \
self.nodes[i].nodes_prior_layer[j].output[0, 0, :])
# 更新输出层当前神经元的偏置
self.nodes[i].bias -= \
self.learning_rate_bias * np.mean(self.nodes[i].delta)
elif self.type_output is "rbf":
# TODO:
pass
return None
输出层使用softmax的反向传播实现:
①计算预测类别与真实类别的差异delta_y
②遍历每个输出节点:计算节点的delta: 将delta_y与激活函数的导数相乘,对连接的全连接层,用
delta和上一层节点output更新权重,用delta更新偏置。
3. 卷积神经网络的一个神经元类cnn_node
def __init__(self, type_node):
# 神经元类型
self.type = type_node
# 上一层中与当前神经元连接的神经元
self.nodes_prior_layer = None
# 下一层中与当前神经元连接的神经元
self.nodes_next_layer = []
# 神经元的输出
self.output = None
# 神经元的灵敏度,
# 当前神经元为全连接层或输出层神经元时,灵敏度为标量,
# 当前神经元为卷积层或池化层神经元时,灵敏度为2-d array,尺寸与output相同
# (实际上卷积层和池化层输出特征图中的每一个点为一个“神经元”)
self.delta = 0.0
if self.type is "input":
# array,输入图像(每个通道)的尺寸
self.size_input = None
elif self.type is "convoluting":
# 卷积核个数
self.n_conv_kernels = 0
# array,卷积核尺寸
self.size_conv_kernel = None
# list,卷积核
self.conv_kernels = []
# 卷积核步长
self.stride_conv_kernel = 1
# 边缘补零的宽度
self.padding_conv = 0
# 偏置
self.bias = 0.0
# 2-d array,卷积后(未经过激活函数)的特征图
self.combination = None
# 激活函数类型,{"relu", "sigmoid", "tanh", None}
self.type_activation = None
elif self.type is "pooling":
# 池化核类型,{"max", "average"}
self.type_pooling = "max"
# array,池化核尺寸
self.size_pool_kernel = np.array([2, 2])
# 池化核步长
self.stride_pool_kernel = 2
# 边缘补零的宽度
self.padding_pool = 0
# array,权值
self.weights = np.array([0.0])
# 偏置
self.bias = 0.0
# 2-d array,池化后(未经过激活函数)的特征图
self.combination = None
# 激活函数类型,{"relu", "sigmoid", "tanh", None}
self.type_activation = None
elif self.type is "full_connecting":
# array,权值
self.weights = np.array([], dtype="float64")
# 偏置
self.bias = 0.0
# array,$(w^{(l)})^T x^{(l - 1)} + b^{(l)}$
self.combination = None
# 激活函数类型,{"relu", "sigmoid", "tanh", None}
self.type_activation = None
elif self.type is "output":
# 输出层类型,{"softmax", "rbf"}
self.type_output = "softmax"
# array,权值
self.weights = np.array([], dtype="float64")
# 偏置
self.bias = 0.0
# $(w^{(L)})^T x^{(L - 1)} + b^{(L)}$
self.combination = 0.0
type - 节点的类型,包括输入层、卷积层、池化层、全连接层、输出层
nodes_prior_layer - 连接到当前节点的上一层节点
nodes_next_layer - 当前节点连接的下一层节点
output - 节点的输出值
delta - 节点的误差项,用于反向传播计算
对于不同类型的节点,定义了其特有的属性,如卷积层的卷积核、激活函数等。
combination表示节点的线性变换输出,即在激活函数之前的输出值。例如对于全连接层节
点,combination = w^T * x + b。
def config(self, args):
if self.type is "input":
size_input, = args
self._config_input(args)
elif self.type is "convoluting":
nodes_prior_layer, size_kernel, \
stride, padding, type_activation = args
self._config_convoluting(nodes_prior_layer, size_kernel,
stride, padding, type_activation)
elif self.type is "pooling":
nodes_prior_layer, type_pooling, size_kernel, \
stride, padding, type_activation = args
self._config_pooling(nodes_prior_layer, type_pooling, size_kernel,
stride, padding, type_activation)
elif self.type is "full_connecting":
nodes_prior_layer, type_activation = args
self._config_full_connecting(nodes_prior_layer, type_activation)
elif self.type is "output":
nodes_prior_layer, type_output = args
self._config_output(nodes_prior_layer, type_output)
return None
配置不同类型节点的参数,主要步骤是:
根据节点类型,提取传入的参数args;
根据节点类型,调用相应的配置方法:_config_input、_config_convoluting等。
这些配置方法应该会设置节点的各种属性,比如:
输入层:设置size_input;卷积层:设置卷积核大小、步长、padding等参数;池化层:设置池化类型、
池化核大小等;全连接层:无特殊参数;输出层:设置输出类型(softmax/rbf)。
def _config_input(self, size_input):
self.size_input = size_input
return None
def _config_convoluting(self, nodes_prior_layer, size_kernel,
stride, padding, type_activation):
self.nodes_prior_layer = nodes_prior_layer
self.n_conv_kernels = len(self.nodes_prior_layer)
self.size_conv_kernel = size_kernel
self.conv_kernels = [np.zeros(self.size_conv_kernel) \
for i in range(self.n_conv_kernels)]
self.stride_conv_kernel = stride
self.padding_conv = padding
self.type_activation = type_activation
return None
配置输入层节点和卷积层节点的参数:
_config_input方法用于配置输入层节点。方法参数size_input是一个数组,表示输入图像的尺寸。
这个方法将输入参数`size_input`设置为节点的size_input属性。
_config_convoluting方法用于配置卷积层节点。这个方法的参数包括:
nodes_prior_layer:上一层中与当前神经元连接的神经元列表(可以有一个或多个)。
size_kernel:卷积核的尺寸,是一个数组。
stride:卷积核的步长。
padding:边缘补零的宽度。
type_activation:激活函数的类型,可以是"relu"、"sigmoid"、"tanh"或者None。
_config_convoluting方法将这些参数设置为节点相应的属性,并且为每个卷积核初始化一个全零的
数组。
def _config_pooling(self, nodes_prior_layer, type_pooling, size_kernel,
stride, padding, type_activation):
self.nodes_prior_layer = nodes_prior_layer
self.type_pooling = type_pooling
self.size_pool_kernel = size_kernel
self.stride_pool_kernel = stride
self.padding_pool = padding
self.type_activation = type_activation
# 初始化权值
if self.type_pooling is "max":
self.weights[0] = 1.0
elif self.type_pooling is "average":
self.weights[0] = 1 / np.prod(self.size_pool_kernel)
return None
def _config_full_connecting(self, nodes_prior_layer, type_activation):
self.nodes_prior_layer = nodes_prior_layer
self.weights = np.zeros(len(self.nodes_prior_layer))
self.type_activation = type_activation
return None
def _config_output(self, nodes_prior_layer, type_output):
self.nodes_prior_layer = nodes_prior_layer
self.weights = np.zeros(len(self.nodes_prior_layer))
self.type_output = type_output
return None
配置池化层节点,全连接层节点,和输出层节点:
_config_pooling方法用于配置池化层节点。这个方法的参数包括:
nodes_prior_layer:上一层中与当前神经元连接的神经元列表(仅有一个)。
type_pooling:池化核的类型,可以是"max"或"average"。
size_kernel:池化核的尺寸,是一个数组。
stride:池化核的步长。
padding:边缘补零的宽度。
type_activation:激活函数的类型,可以是"relu"、"sigmoid"、"tanh"或者None。
_config_pooling方法将这些参数设置为节点相应的属性,并且根据池化类型初始化权重:如果
是"max"池化,权重设置为1.0;如果是"average"池化,权重设置为1除以池化核尺寸的元素乘积。
_config_full_connecting方法用于配置全连接层节点。这个方法的参数包括:
nodes_prior_layer:上一层中的所有神经元。
type_activation:激活函数的类型,可以是"relu"、"sigmoid"、"tanh"或者None。
_config_full_connecting方法将这些参数设置为节点相应的属性,并且初始化权重为一个全零的数
组,数组长度等于上一层神经元的数量。
_config_output方法用于配置输出层节点。这个方法的参数包括:
nodes_prior_layer:上一层中的所有神经元。
type_output:输出层的类型,可以是"softmax"或"rbf"。
_config_output方法将这些参数设置为节点相应的属性,并且初始化权重为一个全零的数组,数组
长度等于上一层神经元的数量。
def feed_forward(self, inputs=None):
if self.type is "input":
self._feed_forward_input(inputs)
elif self.type is "convoluting":
self._feed_forward_convoluting()
elif self.type is "pooling":
self._feed_forward_pooling()
elif self.type is "full_connecting":
self._feed_forward_full_connecting()
elif self.type is "output":
self._feed_forward_output()
return None
def _feed_forward_input(self, inputs):
self.output = inputs
return None
神经元前向传播:
feed_forward方法是对所有类型的神经元进行前向传播的通用方法,其参数inputs只在当前神经元
类型为输入层时有效。该方法会根据神经元的类型调用相应的前向传播方法,比如
_feed_forward_input,_feed_forward_convoluting,_feed_forward_pooling,
_feed_forward_full_connecting,_feed_forward_output。
_feed_forward_input`方法是针对输入层神经元的前向传播方法。其参数inputs是一个3维数组,表
示一个batch的输入图像(或其中一个通道)。输入图像的尺寸为inputs.shape[0] * inputs.shape[1]
(即self.size_input),inputs.shape[2]则表示当前batch中图像的个数。这个方法将inputs设置为
神经元的output属性。这个方法也没有返回值。
def _feed_forward_convoluting(self):
# 每一批中训练样本的个数
size_batch = self.nodes_prior_layer[0].output.shape[-1]
# 当前batch中第一个样本前向传播
combination = 0.0
for i in range(self.n_conv_kernels):
combination += cnn_opr.convolute_2d( \
self.nodes_prior_layer[i].output[:, :, 0],
self.conv_kernels[i], self.size_conv_kernel,
self.stride_conv_kernel, self.padding_conv)
combination += self.bias
# 根据当前batch中第一个样本确定self.combination、self.output的大小
size_combination = combination.shape
self.combination = np.empty([size_combination[0], size_combination[1],
size_batch])
self.output = np.empty([size_combination[0], size_combination[1],
size_batch])
self.combination[:, :, 0] = combination
self.output[:, :, 0] = \
cnn_opr.activate(combination, self.type_activation)
# 当前batch中其它样本前向传播
for iter_in_batch in range(1, size_batch):
combination = 0.0
for i in range(self.n_conv_kernels):
combination += cnn_opr.convolute_2d( \
self.nodes_prior_layer[i].output[:, :, iter_in_batch],
self.conv_kernels[i], self.size_conv_kernel,
self.stride_conv_kernel, self.padding_conv)
combination += self.bias
self.combination[:, :, iter_in_batch] = combination
self.output[:, :, iter_in_batch] = \
cnn_opr.activate(combination, self.type_activation)
return None
卷积层神经元的前向传播:
①获取从前一层传入的每一批训练样本的个数,然后对第一个样本进行卷积操作。这个操作涉及
到的参数包括前一层的输出、卷积核、卷积核大小、步长和边缘填充,卷积操作完成后,将偏置加
到结果上,得到的结果是卷积和偏置组合的结果。
②根据第一个样本的卷积结果确定self.combination和self.output的大小,并存储第一个样本的
卷积结果和激活函数处理后的结果。
③对当前批次中的其它样本进行类似的操作:每个样本都进行卷积,加上偏置,然后通过激活
函数处理。卷积结果被存入self.combination,激活函数处理后的结果被存入self.output。
def _feed_forward_pooling(self):
size_batch = self.nodes_prior_layer.output.shape[-1]
combination = cnn_opr.pool(self.nodes_prior_layer.output[:, :, 0],
self.type_pooling, self.size_pool_kernel,
self.stride_pool_kernel, self.padding_pool)
combination *= self.weights
combination += self.bias
size_combination = combination.shape
self.combination = np.empty([size_combination[0], size_combination[1],
size_batch])
self.output = np.empty([size_combination[0], size_combination[1],
size_batch])
self.combination[:, :, 0] = combination
self.output[:, :, 0] = \
cnn_opr.activate(combination, self.type_activation)
for iter_in_batch in range(1, size_batch):
combination = cnn_opr.pool( \
self.nodes_prior_layer.output[:, :, iter_in_batch],
self.type_pooling, self.size_pool_kernel,
self.stride_pool_kernel, self.padding_pool)
combination *= self.weights
combination += self.bias
self.combination[:, :, iter_in_batch] = combination
self.output[:, :, iter_in_batch] = \
cnn_opr.activate(combination, self.type_activation)
# 灵敏度map置零
self.delta = 0.0
return None
池化层神经元的前向传播:
①获取前一层输出的每个批次样本的数量,然后对第一个样本进行池化操作。这个操作采用的参数
包括前一层的输出,池化类型,池化核大小,步长和边缘填充,得到的结果乘以权重并加上偏置。
然后,基于第一个样本的池化结果设置self.combination和self.output的大小,并存储第一个样本的
池化结果以及激活函数处理后的输出。
②对当前批次中的其他样本进行类似的操作:每个样本都进行池化,乘以权重并加上偏置,然后通
过激活函数处理。池化结果被存入self.combination,激活函数处理后的结果被存入self.output。
③将self.delta(灵敏度图)置零。这个属性在反向传播过程中用来存储误差。
def _feed_forward_full_connecting(self):
size_batch = self.nodes_prior_layer[0].output.shape[2]
self.combination = np.empty([1, 1, size_batch])
self.output = np.empty([1, 1, size_batch])
for iter_in_batch in range(size_batch):
combination = 0.0
for i in range(len(self.nodes_prior_layer)):
# 全连接层的上一层输出为一维向量,
# 即上一层每个神经元输出的特征图尺寸为1 * 1
combination += self.weights[i] * \
self.nodes_prior_layer[i].output[0, 0, iter_in_batch]
combination += self.bias
# combination为标量
self.combination[0, 0, iter_in_batch] = combination
self.output[:, :, iter_in_batch] = \
cnn_opr.activate(self.combination[:, :, iter_in_batch],
self.type_activation)
return None
全连接层神经元的前向传播:
①该方法获取前一层输出中每个批次样本的数量,然后创建self.combination和self.output数组用于
存储计算结果。
②对于当前批次中的每个样本,该方法通过循环访问前一层的每个神经元,将每个神经元的输出乘
以相应的权重并累加,最后加上偏置,得到全连接层的组合结果。
③存储这个组合结果,并对其应用激活函数,将结果存储到self.output中。
需要注意的是,全连接层的输入(即前一层的输出)是一维向量,即每个神经元输出的特征图尺寸
为1 * 1。此外,self.combination的结果是一个标量,这意味着在全连接层,每个神经元只有一个
输出单元。
def _feed_forward_output(self):
if self.type_output is "softmax":
size_batch = self.nodes_prior_layer[0].output.shape[2]
self.combination = np.empty([1, 1, size_batch])
self.output = np.empty([1, 1, size_batch])
for iter_in_batch in range(size_batch):
# $softmax(w_i) =
# \frac{e^{w_i^T x}}{\sum_{j = 1}^n e^{w_j^T x}}$
# 此处只计算$w_i^T x$,其余运算在cnn_layer.feed_forward()中进行
combination = 0.0
for i in range(len(self.nodes_prior_layer)):
combination += self.weights[i] * \
self.nodes_prior_layer[i].output[0, 0, iter_in_batch]
combination += self.bias
# 输出层combination为标量
self.combination[0, 0, iter_in_batch] = combination
elif self.type_output is "rbf":
# TODO:
pass
return None
输出层神经元的前向传播:这个方法考虑了两种可能的输出层类型:softmax和rbf。
①如果输出层类型是softmax,该方法首先获取前一层输出中每个批次样本的数量,然后创建
self.combination和self.output数组用于存储计算结果。
②对于批次中的每个样本,该方法通过循环访问前一层的每个神经元,将每个神经元的输出乘以相
应的权重并累加,最后加上偏置,得到组合结果。这个结果是softmax函数的输入的一部分,即