【实例级时空行人重识别】Learning Instance-level Spatial-Temporal Patterns for Person Re-identification阅读笔记

思想及创新点

使用了空间模型、时间模型以及视觉特征提取三种信息来进行行人重识别。
在这里插入图片描述
与从前的Spatial-Temporal Person Re-Identification论文相比多使用了行人行走的方向信息。

Instance-level Spatial Constraint

同一个摄像头中的行人有不同的状态,例如下图行人可以从左边走也可以从右边走,这就是两种状态。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

Instance-level Temporal Constraint

在这里插入图片描述

Joint Metric

在这里插入图片描述

实现细节

行人方向不需要手动注释,通过跟踪确定移动方向,也可通过五个连续帧内进行确定。
采用预训练的ResNet-50作为特征提取的基线。
将用于分布估计的高斯核的标准偏差设置为100。对于标度参数,公式16中的α和β分别设置为0.15和1。

实验对比

market数据集:
market数据集
DukeMTMC-reID数据集:
DukeMTMC-reID数据集
在这里插入图片描述
烧烛实验:
烧烛实验
引入实例级信息前后效果:
引入实例级信息前后效果
时空耦合以及时空解耦的区别:
时空耦合以及时空解耦的区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值