一、卷积
1. 符号规定:
为描述方便,各维度的参数均设为一致,用一致的字母表示:
i 输入图像尺寸
k 卷积核尺寸
s 卷积步长
p 单侧0填充数量
o 输出图像尺寸
#(在s>1时,tensorflow中的"SAME"填充方式可能出现两侧填充数可相差1,)
具体的卷积运算方式不再赘述。
2. 步长s=1时
2.1 Same (Half) padding
即输出和入具有相同尺寸(o=i),只能在s=1实现。
此时:
s = 1
p = floor(k/2)
2.2 Full padding
o>i时,即输出尺寸变大,
此时:
s = 1
p = k - 1
之所以叫full padding,是因为当p=k-1时,卷积核的移动位置满足:
(1)窗口内有输入图像的元素
(2)满足(1)的前提下&#x