深度学习中的卷积与反卷积操作

本文详细介绍了深度学习中的卷积和反卷积操作,包括符号规定、不同步长下的处理方式以及不能整除时的特殊情况。卷积部分讨论了same和full padding,而反卷积部分则阐述了其作为卷积逆过程的性质,强调了尺寸恢复和元素对应关系的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、卷积

1. 符号规定:

为描述方便,各维度的参数均设为一致,用一致的字母表示:

i	输入图像尺寸
k	卷积核尺寸
s	卷积步长
p	单侧0填充数量
o	输出图像尺寸
 #(在s>1时,tensorflow中的"SAME"填充方式可能出现两侧填充数可相差1,)

具体的卷积运算方式不再赘述。

2. 步长s=1时
2.1 Same (Half) padding

即输出和入具有相同尺寸(o=i),只能在s=1实现。
此时:

s = 1
p = floor(k/2)
2.2 Full padding

o>i时,即输出尺寸变大,
此时:

s = 1
p = k - 1 

之所以叫full padding,是因为当p=k-1时,卷积核的移动位置满足:
(1)窗口内有输入图像的元素
(2)满足(1)的前提下&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值