树是n(n>=0)个结点的有限集合T。当n=0时,称为空树;当n>0时,该集合满足以下2个条件:
- 其中必有一个称为根(root)的特定结点,它没有直接前驱,但有0个或多个直接后继。
- 其余n-1个结点可以划分成m(m>=0)个互不相交的有限集T1,T2,T3,…Tm,其中Ti又是一颗树,称为根的子树。每颗子树的根结点有且仅有一个直接前驱,但有0个或多个直接后继。
树的相关术语
- 结点:包括一个数据元素及若干指向其他结点的分支信息。
- 结点的度:一个结点的子树个数称为此结点的度。如上图结点A,度为3;结点B度为2。
- 叶结点:度为0的结点,即无后继的结点,也称为终端结点。如图①结点K;结点L;结点F等。
- 分支结点:度不为0的结点,也称为非终端结点。
- 结点的层次:从根结点开始定义,根结点的层次为1,根的直接后继的层次为2,以此类推。
- 结点的层次编号:将树中的结点按从上层到下层,同层从左向右的次序排成一个线性序列,依次给它们编以连续的自然数。
- 树的度:树中所有结点的度的最大值。如图①树的度为3。
- 树的高度(深度):树中所有结点的层次的最大值。如图①的树的高度为4.
- 有序树:在树 T 中,如果各子树 Ti 之间是有先后次序的,则称为有序树。
- 森林:m(m>=0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。如上图变为如下森林:
- 同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相等,对应结点的相关关系也相等),称这两课树同构。例如,具有3个结点且不同构的有序树共5种,如下图所示:
- 孩子结点:一个结点的直接后继称为该结点的孩子结点。如图①,结点K,L是结点E的孩子结点。
- 双亲结点:一个结点的直接前驱称为该结点的双亲结点。如图①,结点E是结点K,L的双亲结点。
- 兄弟结点:同一双亲结点的孩子结点之间互称兄弟结点。如图①,结点K和结点L是兄弟结点。
- 堂兄弟:父亲是兄弟关系或堂兄关系的结点称为堂兄弟结点。如图①,结点E,G,H互称为堂兄弟。
- 祖先结点:一个结点的祖先结点是指从根结点到该结点的路径上的所有结点。如图①,结点K的祖先结点为结点A,B,E。
- 子孙结点:一个结点的直接后继和间接后继称为该结点的子孙结点。如图①,结点D的子孙结点为H,I,J,M。
- 前辈:层号比该结点小的结点,都称为该结点的前辈。如图①,结点A,B,C,D都可以称为结点E的前辈。
- 后辈:层号比该结点大的结点,都称为该结点的后辈。如图①,结点K,L,M都可称为结点E的后辈。