经典CNN网络:VGG16-输入和输出

本文介绍VGG16网络结构,探讨其在ILSVRC2014比赛中的贡献,重点解析5个卷积块、池化层和全连接层的配置,解答为何VGG16有16层权重层。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VGG16

            什么是VGG16?VGG16网络结构看不懂啊!!!为什么是16?

前言

             VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG名字的由来了)。该网络是在ILSVRC 2014上的相关工作,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能。VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。

网络结构

            网络上很多给的是下面两张图片,反正就是图,初次看也看不太懂。没关系啦,我把我的理解用表格的形式列出来,可以参考以下。


 首先明确一下,VGG16由哪些层构成的。

            卷积层/池化层/全连接层/softmax层(这里我没有列出softmax层),关于图片经过卷积层和池化层的输出不太清楚,可以参考之前写的文章基础概念:图片的卷积和池化操作_呆呆珝的博客-CSDN博客

             好了,图表来了,一起看看吧。

1. VGG16主要分5块(block),每块后面接上池化层(caluate是计算公式,output是经过卷积和池化后的图片输出尺寸)

1)bolck1:两次卷积,卷积核:3*3   padding:1  步长:1 卷积核数:64

2)maxpool:核:2*2  步长:2  核数:64

3)bolck2:两次卷积,卷积核:3*3   padding:1  步长:1 卷积核数:128

4)maxpool:核:2*2  步长:2  核数:128

5)bolck3:三次卷积,卷积核:3*3   padding:1  步长:1 卷积核数:256

6)maxpool:核:2*2  步长:2  核数:256

7)bolck4:三次卷积,卷积核:3*3   padding:1  步长:1 卷积核数:512

8)maxpool:核:2*2  步长:2  核数:512

9)bolck5:三次卷积,卷积核:3*3   padding:1  步长:1  卷积核数:512

10)maxpool:核:2*2  步长:2  核数:512

2.FC层(全连接层)

            在接入FC层时,通常会将3维的数组拉平成1维数组,方便接入FC层进行映射。拉平之后,输入有25088个输入

1)FC4096:输入25088 ---> 4096个输出

2)FC4096:输入4096 ---> 4096个输出

3)FC1000:输入4096 ---> 1000个输出

3.为什么是16?

            卷积层和全连接层具有权重系数,因此也被称为权重层,总数目为13+3=16(池化层不涉及权重,因此不属于权重层,不被计数),VGG19就好理解了吧。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆呆珝

您的打赏是我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值