转置卷积(反卷积操作)

转置卷积,又称反卷积,常用于深度学习中的上采样操作。它通过矩阵转置来实现,使得输入图像的每个像素与输出图像的F*F个像素相关。在卷积过程中,转置卷积通过padding调整尺寸,步长通常为1,以保持尺寸不变或增大输出维度。与卷积相比,转置卷积在反向传播时的角色相反。尽管存在棋盘格效应,转置卷积因其参数与卷积对偶而成为卷积的逆操作,广泛应用于图像生成和上采样任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本为上采样后进行卷积操作,下图为upPooling后使用尺寸不变的卷积操作(通过padding实现尺寸不变)。

 

有人说也叫转置卷积,因为如下原因:

先说说卷积:

以矩阵相乘的形式完成卷积,𝑅𝑒𝑠𝑢𝑙𝑡_𝑂𝑓_𝐶𝑜𝑛𝑣=𝐶×𝐼𝑛𝑝𝑢𝑡𝐼𝑚𝑔𝑎𝑒

反向传播:𝑑𝐼𝑛𝑝𝑢𝑡𝐼𝑚𝑔𝑎𝑒=𝐶𝑇×𝑑𝑟𝑒𝑠𝑢𝑙𝑡_𝑜𝑓_𝑐𝑜𝑛𝑣

卷积结果中的每一个像素P只与输入影像中的F*F个像素相关

### 转置卷积反卷积的关系 在深度学习领域,转置卷积和所谓的“反卷积”经常被提及并有时混淆。实际上,“反卷积”的术语并准确,因为这暗示着该操作是传统卷积的一个逆过程;然而事实并非如此。 转置卷积是标准卷积运算的真正意义上的逆运算[^2]。相反,它是一种通过特定方式调整输入张量尺寸的操作,通常用于上采样或增加特征图的空间维度。这种操作可以通过学习一组参数来实现放大图像或其他数据结构的效果。 具体而言,当提到转置卷积时,指的是一个能够扩展输入大小的过程,而这个过程中所使用的滤波器(kernel)并没有执行实际意义下的解卷积动作。因此,在严格的数学意义上讲,转置卷积等于真正的反卷积[^3]。 为了更好地理解这一点,考虑如下Python代码片段展示了如何利用PyTorch框架来进行一次简单的转置卷积: ```python import torch import torch.nn as nn input_tensor = torch.randn(1, 1, 4, 4) # 创建随机输入张量 (batch_size=1, channels=1, height=4, width=4) transposed_conv_layer = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=2, padding=1) output_tensor = transposed_conv_layer(input_tensor) print(output_tensor.shape) # 输出形状会比原始输入更大 ``` 上述代码中`nn.ConvTranspose2d()`函数定义了一个二维转置卷积层,其作用是在给定条件下对输入进行空间上的扩张处理而是逆转某个先前应用过的常规卷积效果[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值