输运方程的推导 Derivation of transport equation

1 概述 Summary

对于流场中守恒的物理量,均可采用输运方程进行描述其随时间变化和在空间的分布规律。输运方程的通用形式为:

For conserved physical quantities in a flow field, their temporal evolution and spatial distribution can all be described using transport equations. The general form of a transport equation is:

06802b15b7bb4f49b627f78f7ea7449a.png

输运方程描述了流动过程中的物理量守恒,其包括瞬态、对流、扩散、源四个部分。
通常满足守恒的都是广延量(质量,动量等),而基于广延量守恒的输运方程,其方程实际求解的是对应的强度量(密度,浓度等)的物理场

The transport equation describes the conservation of physical quantities in fluid flow, and includes four components: transient, convection, diffusion and source.

Typically, the conserved quantities are extensive properties like mass, momentum, etc. But the transport equations derived from conservation laws are solved for the corresponding intensive quantities like density, concentration, etc, that represent the physical field of that property.

2 适用范围 Application socpe

输运方程应用的前提条件为流体满足连续介质假设。

流体力学的三个基本方程(连续性方程、动量方程、能量方程)均为输运方程针对不同物理量的表述形式,纳维-斯托克斯方程(N-S方程)为动量方程针对牛顿流体的特定表述。

输运方程也适用于固体热传导等非流动现象。

The prerequisite for applying transport equations is that the fluid satisfies the continuum hypothesis.

The three fundamental equations in fluid dynamics (continuity equation, momentum equation, energy equation) are all formulations of the transport equation for different physical quantities. The Navier-Stokes equations (N-S equations) are a specific formulation of the momentum equation for Newtonian fluids.

Transport equations are also applicable to non-flow phenomena such as heat conduction in solids.

3 推导过程 Derivation

本文中,采用弱形式的积分推导,更有助于理解输运方程中各个项的物理含义。

In this article, a weak integral formulation is adopted to better understand the physical meaning of each term in the transport equation.

做出以下定义:

V:空间任意固定区域(不随时间改变),即控制体

S:V 的外表面,即控制面,既可是流场真实边界(如固体表面),也可是流场内部虚拟边界

Φ:流场的物理量,其分布随时间和空间变化,即以物理场的形式存在

Make the following definitions:

V: An arbitrary fixed region in space (does not change with time), i.e. the control volume

S: The outer surface of V, i.e. the control surface, which can be either a real boundary of the flow field (such as a solid surface) or an internal virtual boundary within the flow field

Φ: A physical quantity of the flow field, whose distribution varies with time and space, i.e. exists in the form of a physical field

deca78a6827a4285a36c9a39c5ddaaa6.png

对于 Φ,其随时间的变化影响因素包括:

1 通过表面 S 和周围环境的作用通量(例如流量)

2 内部源项引发的改变(例如热源)

For Φ, the factors influencing its change over time include:

1 The flux (e.g. flow rate) across the surface S due to interaction with the surrounding environment

2 Changes induced by internal source terms (e.g. heat source)

对于区域 V,Φ 的变化率为 Φ 在 V 的体积分对时间导数:

For the region V, the rate of change of Φ is the volume integral of the time derivative of Φ over V:

d531dfc1305e440ebc41b9799b00aa36.png

将 S 上和 Φ 相关的通量命名为 J,则穿过表面 S 的总通量为:

Denoting the flux associated with Φ across the surface S as J, the total flux through the surface S is:

852fede7ef3b42c89321482d57139cc7.png

法向量为外法向,此项表征了离开区域 V 的 Φ 通量。

The unit normal vector points outward, representing the flux of Φ leaving the region V.

在区域 V 内,源项的作用为:

Inside the region V, the effect of the source term is:

c13e2745226f409fa9783e83dd4bba1b.png

对于区域 V,Φ 变化率和源项、表面通量之间满足关系:

For the region V, the rate of change of Φ, source term and surface flux satisfy:

5d86430d4af34d51a14394561df344a0.png

通量密度 J 包括对流和扩散两个部分,两者由于物理机理不同,因此可线性叠加:

The flux density J consists of convection and diffusion, which can be linearly superimposed due to different physical mechanisms:

af503fe9ea764db9a372d1b58ee43ef5.png

对流通量由流体宏观速度引发,其表达式为:

Convective flux is induced by the macroscopic fluid velocity, with an expression of:

4146844dd98a4d02a013ff4e95c90860.png

扩散通量由 Φ 的梯度引发,其表达式为:

Diffusive flux is induced by the gradient of Φ, with an expression of:

b1efa0a3817043c6b410ff8e660e63af.png

其中,D 为介质的固有属性,根据物理量 Φ 的不同,有扩散率、热传导率、电传导率、粘度等多种属性。负号表示扩散方向是逆梯度的(从大向小扩散)。

Where D is an intrinsic property of the medium. Based on the physical quantity Φ, D can represent diffusivity, thermal conductivity, electrical conductivity, viscosity, etc. The negative sign indicates diffusion is opposite the gradient (from high to low).

综上可知:

In summary:

6e8b8bc703cb4d3f89c3f6b39ff458f0.png

 根据高斯公式:

According to Gauss's theorem:

ed1883d3254e43b6bfa4a62d556eb546.png

可将通量改写为体积分形式:

The flux can be rewritten in volume integral form:

2545bcd40cd446c2806c004230871ae4.png

          

对于瞬态项,有:

For the transient term:

bb7f7fd0a1fc46e6a9a53a5ad0fe7724.png

因此可得:

Therefore:

cfd8ba437c0e4178b90dabce6fe97971.png

由于积分区域 V 为任意形状,因此等式成立的充要条件为:

Since the integration region V is arbitrary, the necessary and sufficient condition for the equation to hold is:

211fa6eab8f141b0b99eec9a725008d2.png

此为输运方程的通用表达形式。

This is the general expression for the transport equation.

4 后记 Postscript

为什么使用积分形式推导:

1 物理含义清晰,推导过程始终围绕“守恒”这个物理本质展开

2 积分形式适用于不连续的流场,例如存在点质量源等情况

3 积分形式在推导过程中不受空间维度和坐标系选择影响

Why use integral formulation for derivation:

1 Clear physical meaning, the derivation always revolves around the physical essence of "conservation".

2 Integral form applies to discontinuous flow fields, such as point mass sources.

3 Integral form is unaffected by spatial dimensions or coordinate system choice during derivation.

几个重要概念:

Some key concepts:

1 体积分表示对函数在三维空间求积分,约等于将三维空间分成若干小块后进行求和

1 Volume integral represents integration of a function over three-dimensional space, approximately equivalent to summing over many small chunks filling the space.

2 通量表示了向量穿过曲面的强度。数学定义中,曲面可封闭也可不封闭

2 Flux represents the intensity of a vector across a surface. In mathematical definition, the surface can be closed or open.

3 梯度表示了函数在空间定点上最快的上升率及其方向。梯度运算针对标量,运算结果为向量。在三维空间,梯度运算为:

3 Gradient represents the fastest spatial rate of increase of a function and its direction at a point. Gradient operates on scalars and returns vectors. In three-dimensional space:

be9bcd9acbef4771a83349c5e8bbfdbf.png

4 散度表示了当体积收缩到一个点时,其通量的极限状态。散度运算针对向量,运算结果为标量。在三维空间,散度运算为:

4 Divergence represents the limiting state of flux when a volume shrinks to a point. Divergence operates on vectors and returns scalars. In three-dimensional space:

aceb7133231d42c3b946951ec4227c96.png

Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源
输运方程是描述粒子或能量在空间中传输的数学模型。在Matlab中,可以使用偏微分方程求解器来求解输运方程。 Matlab提供了几种求解偏微分方程的函数,其中包括pdepe和pdepeopt。pdepe函数可以用于求解一维和二维的定常或非定常偏微分方程,而pdepeopt函数可以用于设置求解选项。 使用pdepe函数求解输运方程的一般步骤如下: 1. 定义偏微分方程的形式,包括方程的系数、边界条件和初始条件。 2. 定义空间网格和时间步长。 3. 调用pdepe函数进行求解,并获取解的结果。 4. 可以使用plot函数将结果可视化。 以下是一个示例代码,演示了如何使用Matlab求解一维输运方程: ```matlab function transport_equation() x = linspace(0, 1, 100); % 定义空间网格 t = linspace(0, 1, 100); % 定义时间步长 m = 0; % 方程系数 d = 1; % 方程系数 sol = pdepe(m, @transport_pde, @transport_ic, @transport_bc, x, t); % 求解输运方程 u = sol(:,:,1); % 获取解的结果 surf(x, t, u); % 可视化结果 xlabel('空间'); ylabel('时间'); zlabel('解'); end function [c, f, s] = transport_pde(x, t, u, DuDx) c = 1; % 方程系数 f = d*DuDx; % 方程形式 s = 0; % 方程形式 end function u0 = transport_ic(x) u0 = sin(pi*x); % 初始条件 end function [pl, ql, pr, qr] = transport_bc(xl, ul, xr, ur, t) pl = ul; % 左边界条件 ql = 0; % 左边界条件 pr = ur; % 右边界条件 qr = 0; % 右边界条件 end ``` 以上代码定义了一个一维输运方程,使用pdepe函数求解,并使用surf函数将结果可视化。你可以根据具体的输运方程进行修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

awayuk11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值