非齐次振动方程和输运方程解法-傅里叶级数法&冲量定理法

这节研究非齐次振动方程和输运方程的定解问题。
这节研究的是齐次的边界条件。
本节介绍两个方法。首先介绍傅里叶级数法,它直接求解非齐次的定解问题;接着是冲量定理法,它把非齐次方程的定解问题转化为齐次方程的定解问题进行求解。

(一) 傅里叶级数法

在求解两端固定的弦的非齐次振动方程定解问题中,得到的解具有傅里叶正弦级数的形式,而且其系数 A n A_n An B n B_n Bn决定于初始条件 φ ( x ) \varphi(x) φ(x) ψ ( x ) \psi(x) ψ(x)的傅里叶正弦级数。至于采取正弦级数而不是一般的傅里叶级数的形式,则完全是由于两端都是第一类齐次边界条件 u ∣ x = 0 u|_{x=0} ux=0 u ∣ x = l u|_{x=l} ux=l原因。
分离变数法得出的这些结果给出提示:不妨把所求的解本身展开为傅里叶级数,即 u ( x , t ) = ∑ n T n ( t ) X n ( x ) . u(x,t)=\sum_nT_n(t)X_n(x). u(x,t)=nTn(t)Xn(x). 上面的傅里叶级数的基本函数族 X n ( x ) X_n(x) Xn(x)为该定解问题齐次方程在所给齐次边界条件下的本征函数。
由于解是自变数x和t的函数,因而 u ( x , t ) u(x,t) u(x,t)的傅里叶系数不是常数,而是时间t的函数,把它记作 T n ( t ) T_n(t) Tn(t)。将上面的待定解(FIXME)代入泛定方程,尝试分离出 T n ( t ) T_n(t) Tn(t)的常微分方程,然后求解。

例1 求解定解问题
u t t − a 2 u x x = A cos ⁡ π x l sin ⁡ ω t ; u_{tt}-a^2u_{xx}=A\cos \frac{\pi x}{l} \sin \omega t; utta2uxx=Acoslπxsinωt; u x ∣ x = 0 = 0 , u x ∣ x = l = 0 ; u_x|_{x=0}=0,u_x|_{x=l}=0; uxx=0=0,uxx=l=0; u ∣ t = 0 = φ ( x ) , u t ∣ t = 0 = ψ ( x ) , ( 0 < x < l ) u|_{t=0}=\varphi (x), u_t|_{t=0}=\psi (x), (0<x<l) ut=0=φ(x),utt=0=ψ(x),(0<x<l)
解: 级数展开的基本函数应是相应的齐次泛定方程 u t t − a 2 u x x = 0 u_{tt}-a^2u_{xx}=0 utta2uxx=0在所给齐次边界条件 u x ∣ x = 0 = 0 u_x|_{x=0}=0 uxx=0=0 u x ∣ x = l = 0 u_x|_{x=l}=0 uxx=l=0下的本征函数。我们已经熟悉了(并没有)这些本征函数,它们是 cos ⁡ n π x l ( n = 0 , 1 , 2 , . . . ) \cos \frac{n\pi x}{l} (n=0,1,2,...) coslnπx(n=0,1,2,...)。这样,试把所求的解展开为傅里叶余弦级数。 u ( x , t ) = ∑ n = 0 ∞ T n ( t ) cos ⁡ n π x l u(x,t)=\sum_{n=0}^{\infty}T_n(t)\cos\frac{n\pi x}{l} u(x,t)=n=0Tn(t)coslnπx.为了求解 T n ( t ) T_n(t) Tn(t),尝试把这个级数代入非齐次泛定方程。 ∑ n = 0 ∞ [ T n ′ ′ + n 2 π 2 a 2 l 2 T n ] cos ⁡ n π x l = A cos ⁡ π x l sin ⁡ ω t . \sum_{n=0}^{\infty}[T^{''}_n+\frac{n^2\pi ^2a^2}{l^2}T_n]\cos \frac{n\pi x}{l}=A\cos \frac{\pi x}{l}\sin \omega t. n=0[Tn+l2n2π2a2Tn]coslnπx=Acoslπxsinωt.等式左边是傅里叶余弦级数,这提示我们把等式右边也展开为傅里叶余弦级数。其实,右边已经是傅里叶余弦级数,它只有一个单项即 n = 1 n=1 n=1的项。于是,比较两边的系数,分离出 T n ( t ) T_n(t) Tn(t)的常微分方程 T 1 ′ ′ + π 2 a 2 l 2 T 1 = A sin ⁡ ω t    , T n ′ ′ + n 2 π 2 a 2 l 2 T n = 0 , n ≠ 1 T^{''}_1+\frac{\pi ^2a^2}{l^2}T_1=A\sin \omega t \space \space, T^{''}_n+\frac{n^2\pi ^2a^2}{l^2}T_n=0, n \neq 1 T1+l2π2a2T1=Asinωt  ,Tn+l2n2π2a2Tn=0,n=1又把 u ( x , t ) u(x,t) u(x,t)的傅里叶余弦级数代入初始条件,得 ∑ n = 0 ∞ T n ( 0 ) cos ⁡ n π l x = φ ( x ) = ∑ n = 0 ∞ φ n cos ⁡ n π l x , \sum_{n=0}^{\infty}T_n(0)\cos\frac{n\pi}{l}x=\varphi(x)=\sum_{n=0}^{\infty}\varphi _n\cos\frac{n\pi}{l}x, n=0Tn(0)coslnπx=φ(x)=n=0φncoslnπx, ∑ n = 0 ∞ T n ′ ( 0 ) cos ⁡ n π l x = ψ ( x ) = ∑ n = 0 ∞ ψ n cos ⁡ n π l x . \sum_{n=0}^{\infty}T^{'}_n(0)\cos \frac{n \pi}{l}x=\psi (x)=\sum_{n=0}^{\infty}\psi_n\cos \frac{n\pi}{l}x . n=0Tn(0)coslnπx=ψ(x)=n=0ψncoslnπx.其中 φ n , ψ n \varphi_n,\psi_n φn,ψn分别是 φ ( x ) , ψ ( x ) \varphi(x),\psi(x) φ(x),ψ(x)的傅里叶余弦级数[以 cos ⁡ ( n π x / l ) \cos (n\pi x/l) cos(nπx/l)为基本函数族]的第n个函数族。上面等式的两边都是傅里叶余弦级数。由于基本函数族 cos ⁡ ( n π x ) / l \cos (n\pi x)/l cos(nπx)/l的正交性,等式两边对应同一基本函数的傅里叶系数必然相等,于是得 T n ( t ) T_n(t) Tn(t)的非零值初始条件 { T 0 ( 0 ) = φ 0 = 1 l ∫ 0 l φ ( ξ ) d ξ T 0 ′ ( 0 ) = ψ 0 = 1 l ∫ 0 l ψ ( ξ ) d ξ \left\{ \begin{aligned} &T_{0}(0)=\varphi_0=\frac{1}{l}\int_{0}^{l}\varphi (\xi)d \xi \\ &T^{'}_{0}(0)=\psi _0=\frac{1}{l} \int^{l}_{0}\psi (\xi)d\xi \\ \end{aligned} \right. T0(0)=φ0=l10lφ(ξ)dξT0(0)=ψ0=l10lψ(ξ)dξ { T n ( 0 ) = φ n = 2 l ∫ 0 l φ ( ξ ) cos ⁡ n π ξ l d ξ n ≠ 0 T n ′ ( 0 ) = ψ n = 2 l ∫ 0 l ψ ( ξ ) cos ⁡ n π ξ l d ξ \left\{ \begin{aligned} T_{n}(0)=\varphi_n=\frac{2}{l}\int_{0}^{l}\varphi (\xi)\cos \frac{n\pi \xi}{l}d \xi &\\ & n \neq 0\\ T^{'}_{n}(0)=\psi _n=\frac{2}{l} \int^{l}_{0}\psi (\xi)\cos \frac{n \pi \xi}{l}d\xi &\\ \end{aligned} \right. Tn(0)=φn=l20lφ(ξ)coslnπξdξTn(0)=ψn=l20lψ(ξ)coslnπξdξn=0 T n ( t ) T_n(t) Tn(t)的常微分方程在初始条件下的解是
T 0 ( t ) = φ 0 + ψ 0 t T 1 ( t ) = A l π a 1 ω 2 − π 2 a 2 / l 2 ( ω sin ⁡ π a t l − π a l sin ⁡ ω t ) + φ 1 cos ⁡ π a t l + l π a ψ 1 sin ⁡ π a t l , T n ( t ) = φ n cos ⁡ n π a t l + l n π a ψ n sin ⁡ n π a t l ( n ≠ 0 , 1 ) T_0(t)=\varphi_0+\psi_0t\\ T_1(t)=\frac{Al}{\pi a}\frac{1}{\omega ^2-\pi ^2a^2/l^2}(\omega\sin \frac{\pi at}{l}-\frac{\pi a}{l}\sin \omega t)+\varphi_1\cos \frac{\pi at}{l} + \frac{l}{\pi a}\psi _1\sin\frac{\pi at}{l}, \\T_n(t)=\varphi_n\cos \frac{n\pi at}{l}+\frac{l}{n\pi a}\psi_n\sin \frac{n\pi at}{l} (n\neq0,1) T0(t)=φ0+ψ0tT1(t)=πaAlω2π2a2/l21(ωsinlπatlπasinωt)+φ1coslπat+πalψ1sinlπat,Tn(t)=φncoslnπat+nπalψnsinlnπat(n=0,1)上面的第二个式子的第一项为 T 1 ( t ) T_1(t) T1(t)的非齐次常微分方程的特解,满足零值初始条件。它的后两项之和及第三个式子分别是 T 1 ( t ) T_1(t) T1(t) T n ( t ) n ≠ 0 , 1 T_n(t) n\neq 0,1 Tn(t)n=0,1的齐次常微分方程的解,满足非零初始条件。
这样,所求的解为 u ( x , t ) = A l π a 1 ω 2 − π 2 a 2 / l 2 ( ω sin ⁡ π a t l − π a l sin ⁡ ω t ) cos ⁡ π x l + φ 0 + ψ 0 t + ∑ n = 1 ∞ ( φ n cos ⁡ n π a t l + l n π a ψ n sin ⁡ n π a t l ) cos ⁡ n π x l u(x,t)=\frac{Al}{\pi a}\frac{1}{\omega^2-\pi^2a^2/l^2}(\omega\sin\frac{\pi at}{l}-\frac{\pi a}{l}\sin \omega t)\cos \frac{\pi x}{l}+\varphi_0 \\+\psi_0t+\sum_{n=1}^{\infty}(\varphi_n\cos\frac{n\pi at}{l}+\frac{l}{n\pi a}\psi_n\sin\frac{n\pi at}{l})\cos \frac{n\pi x}{l} u(x,t)=πaAlω2π2a2/l21(ωsinlπatlπasinωt)coslπx+φ0+ψ0t+n=1(φncoslnπat+nπalψnsinlnπat)coslnπx齐次振动方程和齐次输运方程当然也可以用傅里叶级数法(结合分离变数法)求解,这时得到的 T n ( t ) T_n(t) Tn(t)的常微分方程是齐次方程,求解更容易。
综上所述,可以看出,对于振动和输运问题,不论齐次还是非齐次方程定解问题,傅里叶级数结合分离变数法均可应用,如仅用分离变数法,则只能用于齐次方程齐次边界条件定解问题。

(二) 冲量定理法

应用冲量定理法有一个前提,即初始条件均取零值。
现在用冲量定理法来研究弦的非齐次振动方程定解问题。 u t t − a 2 u x x = f ( x , t ) u ∣ x = 0 = 0 , u ∣ x = l = 0 u ∣ t = 0 = 0 , u t ∣ t = 0 = 0 u_{tt}-a^2u_{xx}=f(x,t)\\u|_{x=0}=0,u|_{x=l}=0\\u|_{t=0}=0,u_t|_{t=0}=0 utta2uxx=f(x,t)ux=0=0,ux=l=0ut=0=0,utt=0=0通过冲量定理法,我们可以得到它的等价问题 v t t − a 2 v x x = 0 , v ∣ x = 0 = 0 , v ∣ x = l = 0 v ∣ t = τ = 0 ,    v t ∣ t = τ = f ( x , τ ) v_{tt}-a^2v_{xx}=0,\\v|_{x=0}=0,v|_{x=l}=0\\v|_{t=\tau}=0 ,\space \space v_t|_{t=\tau}=f(x,\tau) vtta2vxx=0,vx=0=0,vx=l=0vt=τ=0,  vtt=τ=f(x,τ)其中 u ( x , t ) = ∫ 0 t v ( x , t ; τ ) d τ u(x,t)=\int_0^tv(x,t;\tau)d\tau u(x,t)=0tv(x,t;τ)dτ

(1) 冲量定理法的物理思想

请参考 《数学物理方法》(第四版) 梁昆淼编 第165页

(2) 冲量定理法的数学验证

首先验证边界条件,由于 v ∣ x = 0 = 0 , v ∣ x = l = 0 v|_{x=0}=0,v|_{x=l}=0 vx=0=0,vx=l=0,因此 u ∣ x = 0 = ∫ 0 t v ∣ x = 0 d τ = 0 , u ∣ x = l = ∫ 0 t v ∣ x = l d τ = 0. u|_{x=0}=\int_{0}^{t}v|_{x=0}d\tau=0, u|_{x=l}=\int_0^{t}v|_{x=l}d\tau=0. ux=0=0tvx=0dτ=0,ux=l=0tvx=ldτ=0.所以 u ( x , t ) u(x,t) u(x,t)满足边界条件。
其次验证初始条件,由 u u u v v v的关系知 u ∣ t = 0 = ∫ 0 0 v ∣ t = 0 d τ = 0. u|_{t=0}=\int_0^0v|_{t=0}d\tau=0. ut=0=00vt=0dτ=0.为了验证初始速度,需利用积分号下求导的公式 d d t ∫ α ( t ) β ( t ) g ( t ; τ ) d τ = ∫ α ( t ) β ( t ) ∂ g ( t ; τ ) ∂ t d τ + g [ t ; β ( t ) ] d β ( t ) d t − g [ t ; α ( t ) ] d α ( t ) d t , \frac{d}{dt}\int_{\alpha (t)}^{\beta (t)}g(t;\tau)d\tau=\int_{\alpha (t)}^{\beta(t)}\frac{\partial g(t;\tau)}{\partial t}d\tau + g[t;\beta (t)] \frac{d\beta (t)}{dt}-g[t;\alpha(t)]\frac{d\alpha(t)}{dt}, dtdα(t)β(t)g(t;τ)dτ=α(t)β(t)tg(t;τ)dτ+g[t;β(t)]dtdβ(t)g[t;α(t)]dtdα(t),把这个公式应用于 u ( x , t ) = ∫ 0 t v ( x , t ; τ ) d τ u(x,t)=\int_0^tv(x,t;\tau)d\tau u(x,t)=0tv(x,t;τ)dτ,有 u t ( x , t ) = ∫ 0 t v t ( x , t ; τ ) d τ + v ( x , t ; t ) u_t(x,t)=\int_0^tv_t(x,t;\tau)d\tau+v(x,t;t) ut(x,t)=0tvt(x,t;τ)dτ+v(x,t;t)按照v的初始条件,有 v ( x , τ ; τ ) = 0 ( 0 ≤ τ ≤ t ) v(x,\tau;\tau)=0 (0 \leq \tau \leq t) v(x,τ;τ)=0(0τt)。所以 u t ( x , t ) = ∫ 0 t v t ( x , t ; τ ) d τ , u t ∣ t = 0 = ∫ 0 0 v t ∣ t = 0 d τ = 0 u_t(x,t)=\int_0^tv_t(x,t;\tau)d\tau, \\ u_t|_{t=0}=\int_0^0v_t|_{t=0}d\tau=0 ut(x,t)=0tvt(x,t;τ)dτ,utt=0=00vtt=0dτ=0这样,原始方程中的两个零值初始条件都为零。
最后验证非齐次方程,对于 u t u_t ut应用求导公式 u t t = ∫ 0 t v t t ( x , t ; τ ) d τ + v t ( x , t ; t ) . u_{tt}=\int_0^{t}v_{tt}(x,t;\tau)d\tau+v_t(x,t;t). utt=0tvtt(x,t;τ)dτ+vt(x,t;t).按照v的初始条件 v t ( x , τ ; τ ) = f ( x , τ ) ( 0 ≤ τ ≤ t ) . v_t(x,\tau;\tau)=f(x,\tau) (0 \leq \tau \leq t). vt(x,τ;τ)=f(x,τ)(0τt).所以, u t t = ∫ 0 t v t t ( x , t ; τ ) d τ + f ( x , t ) . u_{tt}=\int_0^tv_{tt}(x,t;\tau)d\tau+f(x,t). utt=0tvtt(x,t;τ)dτ+f(x,t).这样 u t t − a 2 u x x = ∫ 0 t ( v t t − a 2 v x x ) d τ + f ( x , t ) = ∫ 0 t 0 d τ + f ( x , t ) = f ( x , t ) , u_{tt}-a^2u_{xx}=\int_0^t(v_{tt}-a^2v_{xx})d\tau +f(x,t)=\int_0^t0d\tau+f(x,t) \\=f(x,t), utta2uxx=0t(vtta2vxx)dτ+f(x,t)=0t0dτ+f(x,t)=f(x,t),这样非齐次方程得以满足,其中利用了v的齐次方程。
数学验证全部完成,冲量定理法在数学上成立。这里还应指出一点:原方程的齐次边界条件不必限于第一类边界条件,而可以是第二类或第三类齐次边界条件。甚至 x = 0 x=0 x=0端与 x = l x=l x=l端的边界条件还可以是不同类的,只要经过变换前后的边界条件类型相同即可。
例2 将例1中的初始条件改为零值,用冲量定理法求解,即求解定解问题。 u t t − a 2 u x x = A cos ⁡ π x l sin ⁡ ω t u x ∣ x = 0 = 0 , u x ∣ x = l = 0 ; u ∣ t = 0 = 0 , u t ∣ t = 0 = 0. u_{tt}-a^2u_{xx}=A\cos \frac{\pi x}{l}\sin \omega t \\u_x|_{x=0}=0,u_x|_{x=l}=0;\\u|_{t=0}=0,u_t|_{t=0}=0. utta2uxx=Acoslπxsinωtuxx=0=0,uxx=l=0;ut=0=0,utt=0=0.
应用冲量定理法,先求解 v t t − a 2 v x x = 0 ; v x ∣ x = 0 = 0 , v x ∣ x = l = 0 ; v ∣ t = τ + 0 , v t ∣ t = τ + 0 = A cos ⁡ π x l sin ⁡ ω τ v_{tt}-a^2v_{xx}=0;\\v_x|_{x=0}=0,v_x|_{x=l}=0;\\v|_{t=\tau+0},v_t|_{t=\tau+0}=A\cos \frac{\pi x}{l}\sin\omega \tau vtta2vxx=0;vxx=0=0,vxx=l=0;vt=τ+0,vtt=τ+0=Acoslπxsinωτ参照边界条件,试把解v展开为傅里叶余弦级数 v ( x , t ; τ ) = ∑ 0 ∞ T n ( t , τ ) cos ⁡ n π x l v(x,t;\tau)=\sum_0^{\infty}T_n(t,\tau)\cos \frac{n\pi x}{l} v(x,t;τ)=0Tn(t,τ)coslnπx把这余弦级数代入泛定方程 ∑ n = 0 ∞ [ T n ′ ′ + n 2 π 2 a 2 l 2 T n ] cos ⁡ n π x l = 0 \sum_{n=0}^{\infty}[T^{''}_n+\frac{n^2\pi ^2a^2}{l^2}T_n]\cos \frac{n\pi x}{l}=0 n=0[Tn+l2n2π2a2Tn]coslnπx=0由此分离出 T n T_n Tn的常微分方程 T n ′ ′ + n 2 π 2 a 2 l 2 T n = 0 T_n^{''}+\frac{n^2\pi^2a^2}{l^2}T_n=0 Tn+l2n2π2a2Tn=0这个常微分方程的解是
T 0 ( t ; τ ) = A 0 ( τ ) + B 0 ( τ ) ( t − τ ) T n ( t ; τ ) = A n ( τ ) cos ⁡ n π a ( t − τ ) l + B n ( τ ) sin ⁡ n π a ( t − τ ) l   ( n = 1 , 2... ) . T_0(t;\tau)=A_0(\tau)+B_0(\tau)(t-\tau)\\T_n(t;\tau)=A_n(\tau)\cos \frac{n\pi a(t-\tau)}{l}+B_n(\tau)\sin\frac{n\pi a(t-\tau)}{l} \space (n=1,2...). T0(t;τ)=A0(τ)+B0(τ)(tτ)Tn(t;τ)=An(τ)coslnπa(tτ)+Bn(τ)sinlnπa(tτ) (n=1,2...).这样,解v具有傅里叶余弦级数形式,为 v ( x , t ; τ ) = A 0 ( τ ) + B 0 ( τ ) ( t − τ ) + ∑ n = 1 ∞ [ A n ( τ ) cos ⁡ n π a ( t − τ ) l + B n ( τ ) sin ⁡ n π a ( t − τ ) l ] cos ⁡ n π x l . v(x,t;\tau)=A_0(\tau)+B_0(\tau)(t-\tau)\\+\sum_{n=1}^{\infty}[A_n(\tau)\cos\frac{n\pi a(t-\tau)}{l}\\+B_n(\tau)\sin\frac{n\pi a(t-\tau)}{l}]\cos \frac{n\pi x}{l}. v(x,t;τ)=A0(τ)+B0(τ)(tτ)+n=1[An(τ)coslnπa(tτ)+Bn(τ)sinlnπa(tτ)]coslnπx.至于系数 A n ( τ ) A_n(\tau) An(τ) B n ( τ ) B_n(\tau) Bn(τ)则由初始条件确定。为此,将上式代入初始条件, A 0 ( τ ) + ∑ n = 1 ∞ A n ( τ ) cos ⁡ n π x l = 0 , B 0 ( τ ) + ∑ n = 1 ∞ B n ( τ ) n π a l cos ⁡ n π x l = A cos ⁡ π x l sin ⁡ ω τ . A_0(\tau)+\sum_{n=1}^{\infty}A_n(\tau)\cos\frac{n\pi x}{l}=0,\\B_0(\tau)+\sum_{n=1}^{\infty}B_n(\tau)\frac{n\pi a}{l}\cos\frac{n\pi x}{l}=A\cos \frac{\pi x}{l}\sin \omega \tau. A0(τ)+n=1An(τ)coslnπx=0,B0(τ)+n=1Bn(τ)lnπacoslnπx=Acoslπxsinωτ.右边的 A cos ⁡ π x l sin ⁡ ω τ A\cos \frac{\pi x}{l}\sin \omega\tau Acoslπxsinωτ也是傅里叶余弦级数,它只有一个单项即n=1的项。比较两边系数,得 A n ( τ ) = 0 , B 1 ( τ ) = A l π a sin ⁡ ω τ , B n ( τ ) = 0 ( n = 2 , 3 , . . . ) A_n(\tau)=0,B_1(\tau)=A\frac{l}{\pi a}\sin \omega \tau,B_n(\tau)=0 (n=2,3,...) An(τ)=0,B1(τ)=Aπalsinωτ,Bn(τ)=0(n=2,3,...)到此,已求出 v ( x , t ; τ ) v(x,t;\tau) v(x,t;τ) v ( x , t ; τ ) = A l π a sin ⁡ ω τ sin ⁡ π a ( t − τ ) l cos ⁡ π x l . v(x,t;\tau)=A\frac{l}{\pi a}\sin \omega \tau \sin \frac{\pi a(t-\tau)}{l}\cos \frac{\pi x}{l}. v(x,t;τ)=Aπalsinωτsinlπa(tτ)coslπx.接着按照 u ( x , t ) = ∫ 0 t v ( x , t ; τ ) d τ u(x,t)=\int_0^tv(x,t;\tau)d\tau u(x,t)=0tv(x,t;τ)dτ得出答案 u ( x , t ) = ∫ 0 t v ( x , t ; τ ) = A l π a cos ⁡ π x l ∫ 0 t sin ⁡ ω τ sin ⁡ π a ( t − τ ) l d τ = A l π a 1 ω 2 − π 2 a 2 / l 2 ( ω sin ⁡ π a l t − π a l sin ⁡ ω t ) cos ⁡ π x l . u(x,t)=\int_0^{t}v(x,t;\tau)\\=\frac{Al}{\pi a}\cos\frac{\pi x}{l}\int_{0}^t\sin\omega\tau\sin\frac{\pi a(t-\tau)}{l}d\tau \\=\frac{Al}{\pi a}\frac{1}{\omega ^2-\pi^2a^2/l^2}(\omega\sin\frac{\pi a}{l}t-\frac{\pi a}{l}\sin \omega t)\cos \frac{\pi x}{l}. u(x,t)=0tv(x,t;τ)=πaAlcoslπx0tsinωτsinlπa(tτ)dτ=πaAlω2π2a2/l21(ωsinlπatlπasinωt)coslπx.输运问题,如泛定方程是非齐次的,完全可以仿照冲量定理法进行加以处理。比如,研究定解问题 u t − a 2 u x x = f ( x , t ) , u x ∣ x = 0 = 0 , u x ∣ x = l = 0 , u ∣ t = 0 = 0 u_t-a^2u_{xx}=f(x,t),\\u_x|_{x=0}=0,u_x|_{x=l}=0,\\u|_{t=0}=0 uta2uxx=f(x,t),uxx=0=0,uxx=l=0,ut=0=0,使用冲量定理我们可以导出 v ( x , t ; τ ) v(x,t;\tau) v(x,t;τ)的定解问题为 v t − a 2 v x x = 0 , v x ∣ x = 0 = 0 , v x ∣ x = l = 0 , v ∣ t = τ = f ( x , τ ) . v_t-a^2v_{xx}=0,\\v_x|_{x=0}=0,v_x|_{x=l}=0,\\v|_{t=\tau}=f(x,\tau). vta2vxx=0,vxx=0=0,vxx=l=0,vt=τ=f(x,τ).现在已是齐次泛定方程,齐次边界条件,可用分离变数法或傅里叶级数法求解,不过要注意,原来求解公式中的 t t t替换成 t − τ t-\tau tτ。同样 u ( x , t ) = ∫ 0 t v ( x , t ; τ ) d τ u(x,t)=\int_0^tv(x,t;\tau)d\tau u(x,t)=0tv(x,t;τ)dτ
例3求解定解问题 u t − a 2 u x x = A sin ⁡ ω t , u ∣ x = 0 = 0 , u x ∣ x = l = 0 , u ∣ t = 0 = 0. u_t-a^2u_{xx}=A\sin\omega t,\\u|_{x=0}=0,u_x|_{x=l}=0,\\u|_{t=0}=0. uta2uxx=Asinωt,ux=0=0,uxx=l=0,ut=0=0. 首先有 u ( x , t ) = ∫ 0 t v ( x , t ; τ ) d τ , u(x,t)=\int^t_0v(x,t;\tau)d\tau, u(x,t)=0tv(x,t;τ)dτ, v ( x , t ; τ ) v(x,t;\tau) v(x,t;τ)则需从下述定解问题 v t − a 2 v x x = 0 , v ∣ x = 0 = 0 , v x ∣ x = l = 0 , v ∣ t = τ = A sin ⁡ ω τ v_t-a^2v_{xx}=0,\\v|_{x=0}=0,v_x|_{x=l}=0,\\v|_{t=\tau}=A\sin \omega \tau vta2vxx=0,vx=0=0,vxx=l=0,vt=τ=Asinωτ求解。这可以仿照例2,用分离变数法解出 v ( x , t ; τ ) = ∑ n = 0 ∞ C n e x p [ − ( n + 1 2 ) 2 π 2 a 2 l 2 ( t − τ ) ] sin ⁡ ( n + 1 2 ) π l ξ d ξ = 2 A sin ⁡ ω τ l l ( n + 1 2 ) π [ − cos ⁡ ( n + 1 2 π ) l ξ ] 0 l = 2 A sin ⁡ ω τ ( n + 1 2 ) π v(x,t;\tau)=\sum_{n=0}^{\infty}C_nexp[-\frac{(n+\frac{1}{2})^2\pi^2a^2}{l^2}(t-\tau)]\sin\frac{(n+\frac{1}{2})\pi}{l}\xi d\xi\\=\frac{2A\sin\omega\tau}{l}\frac{l}{(n+\frac{1}{2})\pi}[-\cos\frac{(n+\frac{1}{2}\pi)}{l}\xi]^l_0=\frac{2A\sin\omega\tau}{(n+\frac{1}{2})\pi} v(x,t;τ)=n=0Cnexp[l2(n+21)2π2a2(tτ)]sinl(n+21)πξdξ=l2Asinωτ(n+21)πl[cosl(n+21π)ξ]0l=(n+21)π2Asinωτ这样, v ( x , t ; τ ) = 2 A sin ⁡ ω τ π ∑ 0 ∞ 1 ( n + 1 2 ) e x p [ − ( n + 1 2 ) 2 π 2 a 2 l 2 ( t − τ ) ] sin ⁡ ( n + 1 2 ) π l x , v(x,t;\tau)=\frac{2A\sin\omega\tau}{\pi}\sum_0^{\infty}\frac{1}{(n+\frac{1}{2})}exp[-\frac{(n+\frac{1}{2})^2\pi^2a^2}{l^2}(t-\tau)]\sin\frac{(n+\frac{1}{2})\pi}{l}{x}, v(x,t;τ)=π2Asinωτ0(n+21)1exp[l2(n+21)2π2a2(tτ)]sinl(n+21)πx从而 u ( x , t ) = ∫ 0 t v ( x , t ; τ ) d τ = 2 A π ∑ n = 0 ∞ 1 ( n + 1 2 ) sin ⁡ ( n + 1 2 ) π x l e − ( n + 1 2 ) 2 π 2 a 2 t l 2 ∫ 0 t e x p [ ( n + 1 2 ) 2 π 2 a 2 τ l 2 ] sin ⁡ ω τ d τ = 2 A π ∑ n = 0 ∞ 1 ( n + 1 2 ) sin ⁡ ( n + 1 2 ) π x l 1 ( n + 1 2 ) 4 π 4 a 4 / l 4 + ω 2 ( ( n + 1 2 ) 2 π 2 a 2 l 2 sin ⁡ ω t − ω cos ⁡ ω t + ω exp ⁡ [ − ( n + 1 2 ) 2 π 2 a 2 t l 2 ] ) . u(x,t)=\int_0^{t}v(x,t;\tau)d\tau\\=\frac{2A}{\pi}\sum_{n=0}^{\infty}\frac{1}{(n+\frac{1}{2})}\sin\frac{(n+\frac{1}{2})\pi x}{l}\\e^{-\frac{(n+\frac{1}{2})^2\pi^2a^2t}{l^2}}\int_0^texp[\frac{(n+\frac{1}{2})^2\pi ^2a^2\tau}{l^2}]\sin\omega\tau d\tau \\=\frac{2A}{\pi}\sum_{n=0}^{\infty}\frac{1}{(n+\frac{1}{2})}\sin\frac{(n+\frac{1}{2})\pi x}{l}\frac{1}{(n+\frac{1}{2})^4\pi^4a^4/l^4+\omega ^2}\\ (\frac{(n+\frac{1}{2})^2\pi^2a^2 }{l^2} \sin\omega t-\omega\cos\omega t+\omega\exp[-\frac{{(n+\frac{1}{2})^2}\pi ^2a^2t}{l^2}]). u(x,t)=0tv(x,t;τ)dτ=π2An=0(n+21)1sinl(n+21)πxel2(n+21)2π2a2t0texp[l2(n+21)2π2a2τ]sinωτdτ=π2An=0(n+21)1sinl(n+21)πx(n+21)4π4a4/l4+ω21(l2(n+21)2π2a2sinωtωcosωt+ωexp[l2(n+21)2π2a2t]).

附录

例一中T1解的求法【常数变易法】:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

  • 9
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值