平均动能K输运方程的推导

一、相关定义

雷诺分解可定义为
u = U + u ′ v = V + v ′ w = W + w ′ p = P + p ′ \begin{aligned}u &= U+u'\\v&=V+v'\\w&=W+w'\\p&=P+p'\end{aligned} uvwp=U+u=V+v=W+w=P+p湍流的瞬时动能 k ( t ) k(t) k(t)可以分解为平均动能 K K K和湍动能 k k k之和,即
k ( t ) = K + k k(t) = K+k k(t)=K+k其中, K = 1 2 ( U 2 + V 2 + W 2 ) K=\frac{1}{2}(U^2+V^2+W^2) K=21(U2+V2+W2), k = 1 2 ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) k=\frac{1}{2}(\overline{u^{\prime2}}+\overline{v^{\prime2}}+\overline{w^{\prime2}}) k=21(u2+v2+w2)。上横线表示均方根r.m.s:
φ ′ 2 ‾ = 1 Δ t ∫ 0 Δ t ( φ ′ ) 2 d t . \overline{{\varphi}^{\prime2}}=\frac{1}{\Delta t}\int_0^{{\Delta}t}({\varphi}^{\prime})^2dt. φ2=Δt10Δt(φ)2dt.平均变形速率张量为: S i j = [ ∂ U ∂ x 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) ∂ V ∂ y 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) ∂ W ∂ z ] . S_{ij}=\begin{bmatrix} \frac{\partial U}{\partial x} &\frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right ) & \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right )& \frac{\partial V}{\partial y} & \frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right ) &\frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right ) & \frac{\partial W}{\partial z} \end{bmatrix}. Sij=xU21(yU+xV)21(zU+xW)21(yU+xV)yV21(zV+yW)21(zU+xW)21(zV+yW)zW.

二、运算规则

Nabla算子的展开形式为: ∇ = ∂ ∂ x i ⃗ + ∂ ∂ y j ⃗ + ∂ ∂ z k ⃗ \nabla=\frac{\partial }{\partial x} \vec i+\frac{\partial }{\partial y} \vec j+\frac{\partial }{\partial z} \vec k =xi +yj +zk ,其本身相当于一个向量,因而:

  • 标量的梯度为向量: ∇ s = ∂ s ∂ x i ⃗ + ∂ s ∂ y j ⃗ + ∂ s ∂ z k ⃗ \nabla s=\frac{\partial s}{\partial x} \vec i+\frac{\partial s}{\partial y} \vec j+\frac{\partial s}{\partial z} \vec k s=xsi +ysj +zsk
  • 向量的散度为标量: ∇ ⋅ v ⃗ = ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z \nabla \cdot \vec v=\frac{\partial u}{\partial x} +\frac{\partial v}{\partial y} +\frac{\partial w}{\partial z} v =xu+yv+zw
  • 向量的梯度为张量: ∇ v ⃗ = [ ∂ U ∂ x ∂ V ∂ x ∂ W ∂ x ∂ U ∂ y ∂ V ∂ y ∂ W ∂ y ∂ U ∂ z ∂ V ∂ z ∂ W ∂ z ] \nabla \vec{v}=\begin{bmatrix} \frac{\partial U}{\partial x} &\frac{\partial V}{\partial x} &\frac{\partial W}{\partial x} \\ \frac{\partial U}{\partial y} &\frac{\partial V}{\partial y} &\frac{\partial W}{\partial y} \\ \frac{\partial U}{\partial z} &\frac{\partial V}{\partial z} &\frac{\partial W}{\partial z} \end{bmatrix} v =xUyUzUxVyVzVxWyWzW
  • 张量的散度为向量: ∇ ⋅ τ = ( ∂ τ x x ∂ x + ∂ τ y x ∂ y + ∂ τ z x ∂ z ) i ⃗ ( ∂ τ x y ∂ x + ∂ τ y y ∂ y + ∂ τ z y ∂ z ) j ⃗ ( ∂ τ x z ∂ x + ∂ τ y z ∂ y + ∂ τ z z ∂ z ) k ⃗ \begin{aligned} \nabla \cdot \tau &= \left (\frac{\partial \tau_{xx}}{\partial x}+ \frac{\partial \tau_{yx}}{\partial y}+\frac{\partial \tau_{zx}}{\partial z}\right)\vec{i}\\ &\quad \quad \left (\frac{\partial \tau_{xy}}{\partial x}+ \frac{\partial \tau_{yy}}{\partial y}+\frac{\partial \tau_{zy}}{\partial z}\right)\vec{j}\\ &\quad \quad \left (\frac{\partial \tau_{xz}}{\partial x}+ \frac{\partial \tau_{yz}}{\partial y}+\frac{\partial \tau_{zz}}{\partial z}\right)\vec{k} \end{aligned} τ=(xτxx+yτyx+zτzx)i (xτxy+yτyy+zτzy)j (xτxz+yτyz+zτzz)k
  • 向量与张量的乘积是向量: a ⋅ b i j = [ a 1 a 2 a 3 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] = [ a 1 b 11 + a 2 b 21 + a 3 b 31 a 1 b 12 + a 2 b 22 + a 3 b 32 a 1 b 13 + a 2 b 23 + a 3 b 33 ] T \begin{aligned} \mathbf a\cdot b_{ij}&=\begin{bmatrix} a_1& a_2 &a_3 \end{bmatrix}\begin{bmatrix} b_{11}& b_{12} & b_{13}\\ b_{21}& b_{22} & b_{23}\\ b_{31}& b_{32} & b_{33} \end{bmatrix}\\ &=\begin{bmatrix} a_1b_{11}+ a_2b_{21} + a_3b_{31} \\ a_1b_{12}+ a_2b_{22} + a_3b_{32} \\ a_1b_{13}+ a_2b_{23} + a_3b_{33} \end{bmatrix}^T \end{aligned} abij=[a1a2a3]b11b21b31b12b22b32b13b23b33=a1b11+a2b21+a3b31a1b12+a2b22+a3b32a1b13+a2b23+a3b33T
  • 张量与张量的乘积是标量: a i j ⋅ b i j = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] = a 11 b 11 + a 12 b 12 + a 13 b 13 + a 21 b 21 + a 22 b 22 + a 23 b 23 + a 31 b 31 + a 32 b 32 + a 33 b 33 \begin{aligned} a_{ij}\cdot b_{ij}&=\begin{bmatrix} a_{11}& a_{12} & a_{13}\\ a_{21}& a_{22} & a_{23}\\ a_{31}& a_{32} & a_{33} \end{bmatrix}\begin{bmatrix} b_{11}& b_{12} & b_{13}\\ b_{21}& b_{22} & b_{23}\\ b_{31}& b_{32} & b_{33} \end{bmatrix}\\ &= a_{11}b_{11}+a_{12}b_{12} + a_{13}b_{13}+ a_{21}b_{21}+ a_{22}b_{22} +\\ &\quad\quad a_{23}b_{23}+a_{31}b_{31}+ a_{32}b_{32} + a_{33}b_{33} \end{aligned} aijbij=a11a21a31a12a22a32a13a23a33b11b21b31b12b22b32b13b23b33=a11b11+a12b12+a13b13+a21b21+a22b22+a23b23+a31b31+a32b32+a33b33

根据以上六点便足以由雷诺方程推导出平均动能 K K K的输运方程。

三、推导过程

不可压缩流动的雷诺方程为:
∂ U ∂ t + ∇ ⋅ ( U U ) + ∇ ⋅ ( u ′ u ′ ‾ ) = − 1 ρ ∂ P ∂ x + ν ∇ ⋅ ∇ U ( 1 ) ∂ V ∂ t + ∇ ⋅ ( V U ) + ∇ ⋅ ( v ′ u ′ ‾ ) = − 1 ρ ∂ P ∂ y + ν ∇ ⋅ ∇ V ( 2 ) ∂ W ∂ t + ∇ ⋅ ( W U ) + ∇ ⋅ ( w ′ u ′ ‾ ) = − 1 ρ ∂ P ∂ z + ν ∇ ⋅ ∇ W ( 3 ) \begin{aligned} \frac{\partial U}{\partial t}+\nabla \cdot(U \mathbf U)+ \nabla \cdot(\overline{u^{\prime} \mathbf {u^{\prime}}})&=-\frac{1}{\rho}\frac{\partial P}{\partial x}+\nu \nabla \cdot \nabla U \qquad(1)\\ \frac{\partial V}{\partial t}+\nabla \cdot(V \mathbf U)+ \nabla \cdot(\overline{v^{\prime} \mathbf {u^{\prime}}})&=-\frac{1}{\rho}\frac{\partial P}{\partial y}+\nu \nabla \cdot \nabla V \qquad(2)\\ \frac{\partial W}{\partial t}+\nabla \cdot(W \mathbf U)+ \nabla \cdot(\overline{w^{\prime} \mathbf {u^{\prime}}})&=-\frac{1}{\rho}\frac{\partial P}{\partial z}+\nu \nabla \cdot \nabla W\qquad(3) \end{aligned} tU+(UU)+(uu)tV+(VU)+(vu)tW+(WU)+(wu)=ρ1xP+νU1=ρ1yP+νV2=ρ1zP+νW3其中, ∇ ⋅ ( u ′ u ′ ‾ ) 、 ∇ ⋅ ( v ′ u ′ ‾ ) 、 ∇ ⋅ ( w ′ u ′ ‾ ) \nabla \cdot(\overline{u^{\prime} \mathbf {u^{\prime}}}) 、\nabla \cdot(\overline{v^{\prime} \mathbf {u^{\prime}}})、\nabla \cdot(\overline{w^{\prime} \mathbf {u^{\prime}}}) (uu)(vu)(wu)乘上密度 ρ \rho ρ便是雷诺应力项。根据向量点乘的运算法则,可以将其表示为一个张量: ( − ρ u ′ 2 ‾ − ρ u ′ v ′ ‾ − ρ u ′ w ′ ‾ − ρ u ′ v ′ ‾ − ρ v ′ 2 ‾ − ρ v ′ w ′ ‾ − ρ u ′ w ′ ‾ − ρ v ′ w ′ ‾ − ρ w ′ 2 ‾ ) . \begin{pmatrix} -\rho \overline{u^{\prime 2}} & -\rho \overline{u^{\prime }v^{\prime}} & -\rho \overline{u^{\prime }w^{\prime}}\\-\rho \overline{u^{\prime }v^{\prime}} & -\rho \overline{v^{\prime 2}} & -\rho \overline{v^{\prime }w^{\prime}} \\ -\rho \overline{u^{\prime }w^{\prime}} & -\rho \overline{v^{\prime }w^{\prime}} & -\rho \overline{w^{\prime 2}} \end{pmatrix}. \quad ρu2ρuvρuwρuvρv2ρvwρuwρvwρw2.将雷诺方程的 x x x方向乘以 U U U, y y y方向乘以 V V V, z z z方向乘以 W W W,并相加即: U ⋅ ( 1 ) + V ⋅ ( 2 ) + W ⋅ ( 3 ) U\cdot (1)+V \cdot(2)+W\cdot (3) U(1)+V(2)+W(3)再进行相应的化简合并便可以得到平均动能 K K K的输运方程: ∂ ( ρ K ) ∂ t ① + ∇ ⋅ ( ρ K U ) ② = ∇ ⋅ ( − P U ③ + 2 μ U S i j ④ − ρ U u i ′ u j ′ ‾ ⑤ ) − 2 μ S i j ⋅ S i j ⑥ + ρ u i ′ u j ′ ‾ ⋅ S i j ⑦ \underset{①}{\frac{\partial(\rho K)}{\partial t}}+ \underset{②}{\nabla\cdot{(\rho K\mathbf U)}}= \nabla \cdot\left ( \underset{③}{-P\mathbf U}+ \underset{④}{2\mu\mathbf U S_{ij}}- \underset{⑤}{\rho\mathbf U\overline{u_i^{\prime}u_j^{\prime}}}\right)- \underset{⑥}{2\mu S_{ij}\cdot S_{ij}} + \underset{⑦}{\rho\overline{u_i^{\prime}u_j^{\prime}}\cdot S_{ij}} t(ρK)+(ρKU)=(PU+2μUSijρUuiuj)2μSijSij+ρuiujSij下面逐个推导出各项:

  • 第一项①是关于时间偏导的,是非定常项,表示平均动能 K K K时间变化率: U ∂ U ∂ t + V ∂ V ∂ t + W ∂ W ∂ t = ∂ ( 1 2 U 2 ) ∂ t + ∂ ( 1 2 V 2 ) ∂ t + ∂ ( 1 2 W 2 ) ∂ t = ∂ [ 1 2 ( U 2 + V 2 + W 2 ) ] ∂ t = ∂ K ∂ t \begin{aligned} & \qquad U \frac{\partial U}{\partial t}+V \frac{\partial V}{\partial t}+W \frac{\partial W}{\partial t} \\ &= \frac{\partial \left(\frac{1}{2} U^2 \right )}{\partial t}+\frac{\partial \left (\frac{1}{2} V^2 \right )}{\partial t}+\frac{\partial \left (\frac{1}{2} W^2 \right )}{\partial t} \\ &=\frac{\partial \left [\frac{1}{2} \left (U^2+ V^2+W^2 \right ) \right ]}{\partial t}\\ &=\frac{\partial K}{\partial t} \end{aligned} UtU+VtV+WtW=t(21U2)+t(21V2)+t(21W2)=t[21(U2+V2+W2)]=tK
  • 第二项②是由于对流引起的平均动能的输运: U ∇ ⋅ ( U U ) + V ∇ ⋅ ( V U ) + W ∇ ⋅ ( V U ) = ∇ ⋅ ( 1 2 U 2 U ) + ∇ ⋅ ( 1 2 V 2 U ) + ∇ ⋅ ( 1 2 W 2 U ) = ∇ ⋅ [ 1 2 ( U 2 + V 2 + W 2 ) U ] = ∇ ⋅ ( K U ) \begin{aligned} & \qquad U\nabla \cdot(U \mathbf U)+V\nabla \cdot(V \mathbf U)+W\nabla \cdot(V \mathbf U) \\ &= \nabla \cdot(\frac{1}{2}U^2 \mathbf U)+\nabla \cdot(\frac{1}{2}V^2 \mathbf U)+\nabla \cdot(\frac{1}{2}W^2 \mathbf U) \\ &=\nabla \cdot\left [\frac{1}{2}\left (U^2+V^2+W^2 \right )\mathbf U \right ] \\ &=\nabla \cdot\left (K\mathbf U \right ) \end{aligned} U(UU)+V(VU)+W(VU)=(21U2U)+(21V2U)+(21W2U)=[21(U2+V2+W2)U]=(KU)
  • 第三项③是由于压强引起的平均动能的输运: − U ρ ∂ P ∂ x − V ρ ∂ P ∂ y − W ρ ∂ P ∂ z = − 1 ρ ∂ ( P U ) ∂ x + P ρ ∂ U ∂ x − 1 ρ ∂ ( P V ) ∂ y + P ρ ∂ V ∂ y − 1 ρ ∂ ( P W ) ∂ x + P ρ ∂ W ∂ z = − 1 ρ ∇ ⋅ ( P U ) + P ρ ∇ ⋅ U = − 1 ρ ∇ ⋅ ( P U ) \begin{aligned} & \qquad -\frac{U}{\rho}\frac{\partial P}{\partial x}-\frac{V}{\rho}\frac{\partial P}{\partial y}-\frac{W}{\rho}\frac{\partial P}{\partial z} \\ &= -\frac{1}{\rho}\frac{\partial (PU)}{\partial x}+\frac{P}{\rho}\frac{\partial U}{\partial x}-\frac{1}{\rho}\frac{\partial (PV)}{\partial y}+\frac{P}{\rho}\frac{\partial V}{\partial y} -\frac{1}{\rho}\frac{\partial (PW)}{\partial x}+\frac{P}{\rho}\frac{\partial W}{\partial z}\\ &=-\frac{1}{\rho}\nabla \cdot \left ( P \mathbf U\right ) + \frac{P}{\rho}\nabla \cdot\mathbf U\\ &=-\frac{1}{\rho}\nabla \cdot \left ( P \mathbf U\right ) \end{aligned} ρUxPρVyPρWzP=ρ1x(PU)+ρPxUρ1y(PV)+ρPyVρ1x(PW)+ρPzW=ρ1(PU)+ρPU=ρ1(PU)上面应用了不可压缩流体 ∇ ⋅ U = 0 \nabla \cdot\mathbf U=0 U=0
  • 第四项④是由于粘性应力引起的平均动能的输运: ν U ∇ ⋅ ∇ U + ν V ∇ ⋅ ∇ V + ν W ∇ ⋅ ∇ W = 2 ν ∇ ⋅ ( U S i j ) − 2 ν S i j ⋅ S i j \begin{aligned} & \qquad \nu U\nabla \cdot \nabla U + \nu V\nabla \cdot \nabla V + \nu W\nabla \cdot \nabla W\\ &= 2\nu \nabla \cdot \left ( \mathbf U S_{ij}\right ) - 2\nu S_{ij}\cdot S_{ij}\\ \end{aligned} νUU+νVV+νWW=2ν(USij)2νSijSij这一项有点难推,这里采用证明等式两边相等的方法,即将等式展开两边相等即可,只需展开 U ∇ ⋅ ∇ U + V ∇ ⋅ ∇ V + W ∇ ⋅ ∇ W = 2 ∇ ⋅ ( U S i j ) − 2 S i j ⋅ S i j U\nabla \cdot \nabla U + V\nabla \cdot \nabla V + W\nabla \cdot \nabla W= 2\nabla \cdot \left ( \mathbf U S_{ij}\right ) - 2 S_{ij}\cdot S_{ij} UU+VV+WW=2(USij)2SijSij即可: ∇ U = ∂ U ∂ x i ⃗ + ∂ U ∂ y j ⃗ + ∂ U ∂ z k ⃗ . ∇ ⋅ ∇ U = ∂ 2 U ∂ x 2 + ∂ 2 U ∂ y 2 + ∂ 2 U ∂ z 2 . U ∇ ⋅ ∇ U = U ∂ 2 U ∂ x 2 + U ∂ 2 U ∂ y 2 + U ∂ 2 U ∂ z 2 . \begin{aligned} & \nabla U=\frac{\partial U}{\partial x} \vec i +\frac{\partial U}{\partial y}\vec j+\frac{\partial U}{\partial z} \vec k .\\ & \nabla \cdot \nabla U=\frac{\partial^2 U}{\partial x^2} +\frac{\partial^2 U}{\partial y^2}+\frac{\partial^2 U}{\partial z^2} .\\ & U\nabla \cdot \nabla U=U\frac{\partial^2 U}{\partial x^2} +U\frac{\partial^2 U}{\partial y^2}+U\frac{\partial^2 U}{\partial z^2} . \\ \end{aligned} U=xUi +yUj +zUk .U=x22U+y22U+z22U.UU=Ux22U+Uy22U+Uz22U.同理可得 V ∇ ⋅ ∇ V = V ∂ 2 V ∂ x 2 + V ∂ 2 V ∂ y 2 + V ∂ 2 V ∂ z 2 . W ∇ ⋅ ∇ W = W ∂ 2 W ∂ x 2 + W ∂ 2 W ∂ y 2 + W ∂ 2 W ∂ z 2 . \begin{aligned} V\nabla \cdot \nabla V&=V\frac{\partial^2 V}{\partial x^2} +V\frac{\partial^2 V}{\partial y^2}+V\frac{\partial^2 V}{\partial z^2} . \\ W\nabla \cdot \nabla W&=W\frac{\partial^2 W}{\partial x^2} +W\frac{\partial^2 W}{\partial y^2}+W\frac{\partial^2 W}{\partial z^2} . \\ \end{aligned} VVWW=Vx22V+Vy22V+Vz22V.=Wx22W+Wy22W+Wz22W.对于右边两项,我们先看第一项: U S i j \mathbf U S_{ij} USij是向量与张量的点乘,即 U S i j = [ U V W ] [ ∂ U ∂ x 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) ∂ V ∂ y 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) ∂ W ∂ z ] = [ U ∂ U ∂ x + V 2 ( ∂ U ∂ y + ∂ V ∂ x ) + W 2 ( ∂ U ∂ z + ∂ W ∂ x ) U 2 ( ∂ U ∂ y + ∂ V ∂ x ) + V ∂ V ∂ y + W 2 ( ∂ V ∂ z + ∂ W ∂ y ) U 2 ( ∂ U ∂ z + ∂ W ∂ x ) + V 2 ( ∂ V ∂ z + ∂ W ∂ y ) + W ∂ W ∂ z ] T . \begin{aligned} \mathbf U S_{ij} &=\begin{bmatrix} U& V &W \end{bmatrix}\begin{bmatrix} \frac{\partial U}{\partial x} &\frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right ) & \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right )& \frac{\partial V}{\partial y} & \frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right ) &\frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right ) & \frac{\partial W}{\partial z} \end{bmatrix}\\ &=\begin{bmatrix} U\frac{\partial U}{\partial x} +\frac{V}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right ) + \frac{W}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right )\\ \frac{U}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right )+ V\frac{\partial V}{\partial y} + \frac{W}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right )\\ \frac{U}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right ) +\frac{V}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right ) + W\frac{\partial W}{\partial z} \end{bmatrix}^T. \end{aligned} USij=[UVW]xU21(yU+xV)21(zU+xW)21(yU+xV)yV21(zV+yW)21(zU+xW)21(zV+yW)zW=UxU+2V(yU+xV)+2W(zU+xW)2U(yU+xV)+VyV+2W(zV+yW)2U(zU+xW)+2V(zV+yW)+WzWT.则进一步地有: 2 ∇ ⋅ ( U S i j ) = 2 [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ⋅ [ U ∂ U ∂ x + V 2 ( ∂ U ∂ y + ∂ V ∂ x ) + W 2 ( ∂ U ∂ z + ∂ W ∂ x ) U 2 ( ∂ U ∂ y + ∂ V ∂ x ) + V ∂ V ∂ y + W 2 ( ∂ V ∂ z + ∂ W ∂ y ) U 2 ( ∂ U ∂ z + ∂ W ∂ x ) + V 2 ( ∂ V ∂ z + ∂ W ∂ y ) + W ∂ W ∂ z ] = 2 ( ∂ U ∂ x ) 2 + 2 U ∂ 2 U ∂ x 2 + ∂ V ∂ x ∂ U ∂ y + V ∂ 2 U ∂ y ∂ x + ( ∂ V ∂ x ) 2 + V ∂ 2 V ∂ x 2 + ∂ W ∂ x ∂ U ∂ z + W ∂ 2 U ∂ z ∂ x + ( ∂ W ∂ x ) 2 + W ∂ 2 W ∂ x 2 + ( ∂ U ∂ y ) 2 + U ∂ 2 U ∂ y 2 + ∂ U ∂ y ∂ V ∂ x + U ∂ 2 V ∂ x ∂ y + 2 ( ∂ V ∂ y ) 2 + 2 V ∂ 2 V ∂ y 2 + ∂ W ∂ y ∂ V ∂ z + W ∂ 2 V ∂ z ∂ y + ( ∂ W ∂ y ) 2 + W ∂ 2 W ∂ y 2 + ( ∂ U ∂ z ) 2 + U ∂ 2 U ∂ z 2 + ∂ U ∂ z ∂ W ∂ x + U ∂ 2 W ∂ x ∂ z + ( ∂ V ∂ z ) 2 + V ∂ 2 V ∂ z 2 + ∂ V ∂ z ∂ W ∂ y + V ∂ 2 W ∂ y ∂ z + 2 ( ∂ W ∂ z ) 2 + 2 W ∂ 2 W ∂ z 2 . \begin{aligned} 2 \nabla \cdot \left(\mathbf U S_{ij}\right ) &=2\begin{bmatrix} \frac{\partial }{\partial x} & \frac{\partial }{\partial y} &\frac{\partial }{\partial z} \end{bmatrix}\cdot \begin{bmatrix} U\frac{\partial U}{\partial x} +\frac{V}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right ) + \frac{W}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right )\\ \frac{U}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right )+ V\frac{\partial V}{\partial y} + \frac{W}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right )\\ \frac{U}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right ) +\frac{V}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right ) + W\frac{\partial W}{\partial z} \end{bmatrix}\\ &=2\left(\frac{\partial U}{\partial x}\right)^2+2U\frac{\partial^2 U}{\partial x^2}+\frac{\partial V}{\partial x}\frac{\partial U}{\partial y}+V\frac{\partial^2 U}{\partial y\partial x}+\left(\frac{\partial V}{\partial x}\right)^2+V\frac{\partial^2 V}{\partial x^2}+\\ &\qquad \frac{\partial W}{\partial x}\frac{\partial U}{\partial z}+W\frac{\partial^2 U}{\partial z\partial x}+\left(\frac{\partial W}{\partial x}\right)^2+W\frac{\partial^2 W}{\partial x^2}+\\ &\qquad \left(\frac{\partial U}{\partial y}\right)^2+U\frac{\partial^2 U}{\partial y^2}+\frac{\partial U}{\partial y}\frac{\partial V}{\partial x}+U\frac{\partial^2 V}{\partial x\partial y}+2\left(\frac{\partial V}{\partial y}\right)^2+2V\frac{\partial^2 V}{\partial y^2}+\\ &\qquad \frac{\partial W}{\partial y}\frac{\partial V}{\partial z}+W\frac{\partial^2 V}{\partial z\partial y}+\left(\frac{\partial W}{\partial y}\right)^2+W\frac{\partial^2 W}{\partial y^2}+\\ &\qquad \left(\frac{\partial U}{\partial z}\right)^2+U\frac{\partial^2 U}{\partial z^2}+ \frac{\partial U}{\partial z}\frac{\partial W}{\partial x}+U\frac{\partial^2 W}{\partial x\partial z}+\left(\frac{\partial V}{\partial z}\right)^2+V\frac{\partial^2 V}{\partial z^2}+\\ &\qquad \frac{\partial V}{\partial z}\frac{\partial W}{\partial y}+V\frac{\partial^2 W}{\partial y\partial z}+2\left(\frac{\partial W}{\partial z}\right)^2+2W\frac{\partial^2 W}{\partial z^2}. \end{aligned} 2(USij)=2[xyz]UxU+2V(yU+xV)+2W(zU+xW)2U(yU+xV)+VyV+2W(zV+yW)2U(zU+xW)+2V(zV+yW)+WzW=2(xU)2+2Ux22U+xVyU+Vyx2U+(xV)2+Vx22V+xWzU+Wzx2U+(xW)2+Wx22W+(yU)2+Uy22U+yUxV+Uxy2V+2(yV)2+2Vy22V+yWzV+Wzy2V+(yW)2+Wy22W+(zU)2+Uz22U+zUxW+Uxz2W+(zV)2+Vz22V+zVyW+Vyz2W+2(zW)2+2Wz22W.对于右边第二项则有: 2 S i j ⋅ S i j = 2 [ ∂ U ∂ x 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) ∂ V ∂ y 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) ∂ W ∂ z ] ⋅ [ ∂ U ∂ x 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) ∂ V ∂ y 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) ∂ W ∂ z ] = 2 ( ∂ U ∂ x ) 2 + 1 2 ( ∂ U ∂ y ) 2 + ∂ U ∂ y ∂ V ∂ x + 1 2 ( ∂ V ∂ x ) 2 + 1 2 ( ∂ U ∂ z ) 2 + ∂ U ∂ z ∂ W ∂ x + 1 2 ( ∂ W ∂ x ) 2 + 1 2 ( ∂ U ∂ y ) 2 + ∂ U ∂ y ∂ V ∂ x + 1 2 ( ∂ V ∂ x ) 2 + 2 ( ∂ V ∂ y ) 2 + 1 2 ( ∂ V ∂ z ) 2 + ∂ V ∂ z ∂ W ∂ y + 1 2 ( ∂ W ∂ y ) 2 + 1 2 ( ∂ U ∂ z ) 2 + ∂ U ∂ z ∂ W ∂ x + 1 2 ( ∂ W ∂ x ) 2 + 1 2 ( ∂ V ∂ z ) 2 + ∂ V ∂ z ∂ W ∂ y + 1 2 ( ∂ W ∂ y ) 2 + 2 ( ∂ W ∂ z ) 2 = 2 ( ∂ U ∂ x ) 2 + ( ∂ U ∂ y ) 2 + 2 ∂ U ∂ y ∂ V ∂ x + ( ∂ V ∂ x ) 2 + ( ∂ U ∂ z ) 2 + 2 ∂ U ∂ z ∂ W ∂ x + ( ∂ W ∂ x ) 2 + 2 ( ∂ V ∂ y ) 2 + ( ∂ V ∂ z ) 2 + 2 ∂ V ∂ z ∂ W ∂ y + ( ∂ W ∂ y ) 2 + 2 ( ∂ W ∂ z ) 2 . \begin{aligned} 2S_{ij}\cdot S_{ij}&=2\begin{bmatrix} \frac{\partial U}{\partial x} &\frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right ) & \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right )& \frac{\partial V}{\partial y} & \frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right ) &\frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right ) & \frac{\partial W}{\partial z} \end{bmatrix}\cdot \begin{bmatrix} \frac{\partial U}{\partial x} &\frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right ) & \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right )& \frac{\partial V}{\partial y} & \frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right ) &\frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right ) & \frac{\partial W}{\partial z} \end{bmatrix}\\ &=2\left(\frac{\partial U}{\partial x}\right)^2+\frac{1}{2}\left(\frac{\partial U}{\partial y}\right)^2+\frac{\partial U}{\partial y}\frac{\partial V}{\partial x}+\frac{1}{2}\left(\frac{\partial V}{\partial x}\right)^2+\frac{1}{2}\left(\frac{\partial U}{\partial z}\right)^2+\frac{\partial U}{\partial z}\frac{\partial W}{\partial x}+\frac{1}{2}\left(\frac{\partial W}{\partial x}\right)^2+\\ &\qquad \frac{1}{2}\left(\frac{\partial U}{\partial y}\right)^2+\frac{\partial U}{\partial y}\frac{\partial V}{\partial x}+\frac{1}{2}\left(\frac{\partial V}{\partial x}\right)^2+2\left(\frac{\partial V}{\partial y}\right)^2+\frac{1}{2}\left(\frac{\partial V}{\partial z}\right)^2+\frac{\partial V}{\partial z}\frac{\partial W}{\partial y}+\frac{1}{2}\left(\frac{\partial W}{\partial y}\right)^2+\\ &\qquad \frac{1}{2}\left(\frac{\partial U}{\partial z}\right)^2+\frac{\partial U}{\partial z}\frac{\partial W}{\partial x}+\frac{1}{2}\left(\frac{\partial W}{\partial x}\right)^2+\frac{1}{2}\left(\frac{\partial V}{\partial z}\right)^2+\frac{\partial V}{\partial z}\frac{\partial W}{\partial y}+\frac{1}{2}\left(\frac{\partial W}{\partial y}\right)^2+2\left(\frac{\partial W}{\partial z}\right)^2\\ &=2\left(\frac{\partial U}{\partial x}\right)^2+\left(\frac{\partial U}{\partial y}\right)^2+2\frac{\partial U}{\partial y}\frac{\partial V}{\partial x}+\left(\frac{\partial V}{\partial x}\right)^2+\left(\frac{\partial U}{\partial z}\right)^2+2\frac{\partial U}{\partial z}\frac{\partial W}{\partial x}+\left(\frac{\partial W}{\partial x}\right)^2+\\ &\qquad 2\left(\frac{\partial V}{\partial y}\right)^2+\left(\frac{\partial V}{\partial z}\right)^2+2\frac{\partial V}{\partial z}\frac{\partial W}{\partial y}+\left(\frac{\partial W}{\partial y}\right)^2+\\ &\qquad 2\left(\frac{\partial W}{\partial z}\right)^2. \end{aligned} 2SijSij=2xU21(yU+xV)21(zU+xW)21(yU+xV)yV21(zV+yW)21(zU+xW)21(zV+yW)zWxU21(yU+xV)21(zU+xW)21(yU+xV)yV21(zV+yW)21(zU+xW)21(zV+yW)zW=2(xU)2+21(yU)2+yUxV+21(xV)2+21(zU)2+zUxW+21(xW)2+21(yU)2+yUxV+21(xV)2+2(yV)2+21(zV)2+zVyW+21(yW)2+21(zU)2+zUxW+21(xW)2+21(zV)2+zVyW+21(yW)2+2(zW)2=2(xU)2+(yU)2+2yUxV+(xV)2+(zU)2+2zUxW+(xW)2+2(yV)2+(zV)2+2zVyW+(yW)2+2(zW)2.则可以得到 2 ∇ ⋅ ( U S i j ) − 2 S i j ⋅ S i j 2\nabla \cdot \left ( \mathbf U S_{ij}\right ) - 2 S_{ij}\cdot S_{ij} 2(USij)2SijSij 2 ∇ ⋅ ( U S i j ) − 2 S i j ⋅ S i j = U ∇ ⋅ ∇ U + V ∇ ⋅ ∇ V + W ∇ ⋅ ∇ W + U ∂ 2 U ∂ 2 x + V ∂ 2 U ∂ x ∂ y + W ∂ 2 U ∂ z ∂ x + U ∂ 2 V ∂ x ∂ y + V ∂ 2 V ∂ 2 y + W ∂ 2 V ∂ z ∂ y + U ∂ 2 W ∂ x ∂ z + V ∂ 2 W ∂ y ∂ z + W ∂ 2 W ∂ z 2 . \begin{aligned} 2\nabla \cdot \left ( \mathbf U S_{ij}\right ) - 2 S_{ij}\cdot S_{ij}&=U\nabla \cdot \nabla U + V\nabla \cdot \nabla V + W\nabla \cdot \nabla W+\\ &\quad \quad U\frac{\partial^2 U}{\partial^2 x} +V\frac{\partial^2 U}{\partial x\partial y}+W\frac{\partial^2 U}{\partial z\partial x}+\\ &\quad \quad U\frac{\partial^2 V}{\partial x\partial y}+V\frac{\partial^2 V}{\partial^2 y}+W\frac{\partial^2 V}{\partial z\partial y}+\\ &\quad \quad U\frac{\partial^2 W}{\partial x\partial z}+V\frac{\partial^2 W}{\partial y \partial z}+W\frac{\partial^2 W}{\partial z^2}. \end{aligned} 2(USij)2SijSij=UU+VV+WW+U2x2U+Vxy2U+Wzx2U+Uxy2V+V2y2V+Wzy2V+Uxz2W+Vyz2W+Wz22W.又因为 U ∂ 2 U ∂ 2 x + U ∂ 2 V ∂ x ∂ y + U ∂ 2 W ∂ x ∂ z = U ∂ ∂ x ( ∂ U ∂ x + ∂ V ∂ y + ∂ W ∂ z ) = U ∂ ∂ x ( ∇ ⋅ U ) = 0 \begin{aligned} &\quad \quad U\frac{\partial^2 U}{\partial^2 x} + U\frac{\partial^2 V}{\partial x\partial y}+U\frac{\partial^2 W}{\partial x\partial z}\\ &=U\frac{\partial}{\partial x}\left(\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial W}{\partial z}\right )\\ &=U\frac{\partial}{\partial x}\left(\nabla \cdot \mathbf U\right )\\ &=0 \end{aligned} U2x2U+Uxy2V+Uxz2W=Ux(xU+yV+zW)=Ux(U)=0同理 V ∂ 2 U ∂ x ∂ y + V ∂ 2 V ∂ y 2 + V ∂ 2 W ∂ y ∂ z = 0 W ∂ 2 U ∂ x ∂ z + W ∂ 2 V ∂ y ∂ z + W ∂ 2 W ∂ z 2 = 0 \begin{aligned} &V\frac{\partial^2 U}{\partial x \partial y} + V\frac{\partial^2 V}{\partial y^2}+V\frac{\partial^2 W}{\partial y\partial z}=0\\ &W\frac{\partial^2 U}{\partial x \partial z} + W\frac{\partial^2 V}{\partial y \partial z}+W\frac{\partial^2 W}{\partial z^2}=0 \end{aligned} Vxy2U+Vy22V+Vyz2W=0Wxz2U+Wyz2V+Wz22W=0 U ∇ ⋅ ∇ U + V ∇ ⋅ ∇ V + W ∇ ⋅ ∇ W = 2 ∇ ⋅ ( U S i j ) − 2 S i j ⋅ S i j U\nabla \cdot \nabla U + V\nabla \cdot \nabla V + W\nabla \cdot \nabla W= 2\nabla \cdot \left ( \mathbf U S_{ij}\right ) - 2 S_{ij}\cdot S_{ij} UU+VV+WW=2(USij)2SijSij成立。
  • 第五项⑤是由于雷诺应力引起的平均动能的输运: U ∇ ⋅ ( u ′ u ′ ‾ ) + V ∇ ⋅ ( v ′ u ′ ‾ ) + W ∇ ⋅ ( w ′ u ′ ‾ ) = ∇ ⋅ ( U u i ′ u j ′ ‾ ) − u i ′ u j ′ ‾ ⋅ S i j U\nabla \cdot \left (\overline{u'\mathbf{u'} } \right )+V\nabla \cdot \left (\overline{v'\mathbf{u'} } \right )+W\nabla \cdot \left (\overline{w'\mathbf{u'} } \right )=\nabla \cdot \left (\mathbf{U} \overline{u_i'u_j'} \right )-\overline{u_i'u_j'}\cdot S_{ij} U(uu)+V(vu)+W(wu)=(Uuiuj)uiujSij这里同样将采用通过验证等式两边相等来说明等式相等: ∇ ⋅ ( u ′ u ′ ‾ ) = [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ⋅ [ u ′ u ′ ‾ u ′ v ′ ‾ u ′ w ′ ‾ ] = ∂ u ′ u ′ ‾ ∂ x + ∂ u ′ v ′ ‾ ∂ y + ∂ u ′ w ′ ‾ ∂ z \begin{aligned} \nabla \cdot \left( {\overline {u'{\mathbf{u'}}} } \right) &= \begin{bmatrix} \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \end{bmatrix} \cdot \begin{bmatrix} \overline {u'u'} & \overline {u'v'} &\overline {u'w'} \end{bmatrix}\\ &=\frac{\partial \overline {u'u'}}{\partial x}+\frac{\partial \overline {u'v'}}{\partial y}+\frac{\partial \overline {u'w'}}{\partial z} \end{aligned} (uu)=[xyz][uuuvuw]=xuu+yuv+zuw同理 ∇ ⋅ ( v ′ u ′ ‾ ) = ∂ v ′ u ′ ‾ ∂ x + ∂ v ′ v ′ ‾ ∂ y + ∂ v ′ w ′ ‾ ∂ z ∇ ⋅ ( w ′ u ′ ‾ ) = ∂ w ′ u ′ ‾ ∂ x + ∂ w ′ v ′ ‾ ∂ y + ∂ w ′ w ′ ‾ ∂ z \begin{aligned} \nabla \cdot \left( {\overline {v'{\mathbf{u'}}} } \right)&=\frac{\partial \overline {v'u'}}{\partial x}+\frac{\partial \overline {v'v'}}{\partial y}+\frac{\partial \overline {v'w'}}{\partial z}\\ \nabla \cdot \left( {\overline {w'{\mathbf{u'}}} } \right)&=\frac{\partial \overline {w'u'}}{\partial x}+\frac{\partial \overline {w'v'}}{\partial y}+\frac{\partial \overline {w'w'}}{\partial z} \end{aligned} (vu)(wu)=xvu+yvv+zvw=xwu+ywv+zww U ∇ ⋅ ( u ′ u ′ ‾ ) + V ∇ ⋅ ( v ′ u ′ ‾ ) + W ∇ ⋅ ( w ′ u ′ ‾ ) = U ∂ u ′ u ′ ‾ ∂ x + U ∂ u ′ v ′ ‾ ∂ y + U ∂ u ′ w ′ ‾ ∂ z V ∂ v ′ u ′ ‾ ∂ x + V ∂ v ′ v ′ ‾ ∂ y + V ∂ v ′ w ′ ‾ ∂ z W ∂ w ′ u ′ ‾ ∂ x + W ∂ w ′ v ′ ‾ ∂ y + W ∂ w ′ w ′ ‾ ∂ z \begin{aligned} &\quad \quad U\nabla \cdot \left (\overline{u'\mathbf{u'} } \right )+V\nabla \cdot \left (\overline{v'\mathbf{u'} } \right )+W\nabla \cdot \left (\overline{w'\mathbf{u'} } \right )\\ &=U\frac{\partial \overline {u'u'}}{\partial x}+U\frac{\partial \overline {u'v'}}{\partial y}+U\frac{\partial \overline {u'w'}}{\partial z}\\ &\quad V\frac{\partial \overline {v'u'}}{\partial x}+V\frac{\partial \overline {v'v'}}{\partial y}+V\frac{\partial \overline {v'w'}}{\partial z}\\ &\quad W\frac{\partial \overline {w'u'}}{\partial x}+W\frac{\partial \overline {w'v'}}{\partial y}+W\frac{\partial \overline {w'w'}}{\partial z} \end{aligned} U(uu)+V(vu)+W(wu)=Uxuu+Uyuv+UzuwVxvu+Vyvv+VzvwWxwu+Wywv+Wzww对于等式右边的第一项, U u i ′ u j ′ ‾ \mathbf{U} \overline{u_i'u_j'} Uuiuj是向量与张量的运算: U u i ′ u j ′ ‾ = [ U V W ] ⋅ [ u ′ u ′ ‾ u ′ v ′ ‾ u ′ w ′ ‾ v ′ u ′ ‾ v ′ v ′ ‾ v ′ w ′ ‾ w ′ u ′ ‾ w ′ v ′ ‾ w ′ w ′ ‾ ] = [ U u ′ u ′ ‾ + V v ′ u ′ ‾ + W w ′ u ′ ‾ U u ′ v ′ ‾ + V v ′ v ′ ‾ + W w ′ v ′ ‾ U u ′ w ′ ‾ + V v ′ w ′ ‾ + W w ′ w ′ ‾ ] \begin{aligned} \mathbf{U} \overline{u_i'u_j'}&=\begin{bmatrix} U&V&W \end{bmatrix}\cdot \begin{bmatrix} \overline{u'u'} & \overline{u'v'} & \overline{u'w'} \\ \overline{v'u'} & \overline{v'v'} & \overline{v'w'} \\ \overline{w'u'} & \overline{w'v'} & \overline{w'w'} \end{bmatrix}\\ &=\begin{bmatrix} U\overline{u'u'} +V \overline{v'u'} + W\overline{w'u'} \\ U\overline{u'v'} +V \overline{v'v'} + W\overline{w'v'} \\ U\overline{u'w'} +V \overline{v'w'} + W\overline{w'w'} \end{bmatrix} \end{aligned} Uuiuj=[UVW]uuvuwuuvvvwvuwvwww=Uuu+Vvu+WwuUuv+Vvv+WwvUuw+Vvw+Www则: ∇ ⋅ ( U u i ′ u j ′ ‾ ) = [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ⋅ [ U u ′ u ′ ‾ + V v ′ u ′ ‾ + W w ′ u ′ ‾ U u ′ v ′ ‾ + V v ′ v ′ ‾ + W w ′ v ′ ‾ U u ′ w ′ ‾ + V v ′ w ′ ‾ + W w ′ w ′ ‾ ] = u ′ u ′ ‾ ∂ U ∂ x + U ∂ u ′ u ′ ‾ ∂ x + v ′ u ′ ‾ ∂ V ∂ x + V ∂ v ′ u ′ ‾ ∂ x + w ′ u ′ ‾ ∂ W ∂ x + W ∂ w ′ u ′ ‾ ∂ x + u ′ v ′ ‾ ∂ U ∂ y + U ∂ u ′ v ′ ‾ ∂ y + v ′ v ′ ‾ ∂ V ∂ y + V ∂ v ′ v ′ ‾ ∂ y + w ′ v ′ ‾ ∂ W ∂ y + W ∂ w ′ v ′ ‾ ∂ y + u ′ w ′ ‾ ∂ U ∂ z + U ∂ u ′ w ′ ‾ ∂ z + v ′ w ′ ‾ ∂ V ∂ z + V ∂ v ′ w ′ ‾ ∂ z + w ′ w ′ ‾ ∂ W ∂ z + W ∂ w ′ w ′ ‾ ∂ z . \begin{aligned} \nabla \cdot \left (\mathbf{U} \overline{u_i'u_j'}\right )&=\begin{bmatrix} \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \end{bmatrix} \cdot \begin{bmatrix} U\overline{u'u'} +V \overline{v'u'} + W\overline{w'u'} \\ U\overline{u'v'} +V \overline{v'v'} + W\overline{w'v'} \\ U\overline{u'w'} +V \overline{v'w'} + W\overline{w'w'} \end{bmatrix}\\ &=\overline{u'u'}\frac{\partial U}{\partial x}+U\frac{\partial \overline{u'u'}}{\partial x}+\overline{v'u'}\frac{\partial V}{\partial x} +V\frac{\partial \overline{v'u'}}{\partial x}+\overline{w'u'}\frac{\partial W}{\partial x}+W\frac{\partial \overline{w'u'}}{\partial x}+\\ &\quad \overline{u'v'}\frac{\partial U}{\partial y}+U\frac{\partial \overline{u'v'}}{\partial y}+\overline{v'v'}\frac{\partial V}{\partial y} +V\frac{\partial \overline{v'v'}}{\partial y}+\overline{w'v'}\frac{\partial W}{\partial y}+W\frac{\partial \overline{w'v'}}{\partial y}+\\ &\quad \overline{u'w'}\frac{\partial U}{\partial z}+U\frac{\partial \overline{u'w'}}{\partial z}+\overline{v'w'}\frac{\partial V}{\partial z} +V\frac{\partial \overline{v'w'}}{\partial z}+\overline{w'w'}\frac{\partial W}{\partial z}+W\frac{\partial \overline{w'w'}}{\partial z}.\\ \end{aligned} (Uuiuj)=[xyz]Uuu+Vvu+WwuUuv+Vvv+WwvUuw+Vvw+Www=uuxU+Uxuu+vuxV+Vxvu+wuxW+Wxwu+uvyU+Uyuv+vvyV+Vyvv+wvyW+Wywv+uwzU+Uzuw+vwzV+Vzvw+wwzW+Wzww.同样右边第二项可以得到: u i ′ u j ′ ‾ ⋅ S i j = [ u ′ u ′ ‾ u ′ v ′ ‾ u ′ w ′ ‾ v ′ u ′ ‾ v ′ v ′ ‾ v ′ w ′ ‾ w ′ u ′ ‾ w ′ v ′ ‾ w ′ w ′ ‾ ] ⋅ [ ∂ U ∂ x 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) ∂ V ∂ y 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) ∂ W ∂ z ] = u ′ u ′ ‾ ∂ U ∂ x + v ′ u ′ ‾ ∂ V ∂ x + w ′ u ′ ‾ ∂ W ∂ x + u ′ v ′ ‾ ∂ U ∂ y + v ′ v ′ ‾ ∂ V ∂ y + w ′ v ′ ‾ ∂ W ∂ y + u ′ w ′ ‾ ∂ U ∂ z + v ′ w ′ ‾ ∂ V ∂ z + w ′ w ′ ‾ ∂ W ∂ z . \begin{aligned} \overline{u_i'u_j'}\cdot S_{ij}&=\begin{bmatrix} \overline{u'u'} & \overline{u'v'} & \overline{u'w'} \\ \overline{v'u'} & \overline{v'v'} & \overline{v'w'} \\ \overline{w'u'} & \overline{w'v'} & \overline{w'w'} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial U}{\partial x} &\frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right ) & \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial y}+\frac{\partial V}{\partial x} \right )& \frac{\partial V}{\partial y} & \frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right )\\ \frac{1}{2}\left ( \frac{\partial U}{\partial z}+\frac{\partial W}{\partial x} \right ) &\frac{1}{2}\left ( \frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right ) & \frac{\partial W}{\partial z} \end{bmatrix}\\ &=\overline{u'u'}\frac{\partial U}{\partial x}+\overline{v'u'}\frac{\partial V}{\partial x} +\overline{w'u'}\frac{\partial W}{\partial x}+\\ &\quad \overline{u'v'}\frac{\partial U}{\partial y}+\overline{v'v'}\frac{\partial V}{\partial y} +\overline{w'v'}\frac{\partial W}{\partial y}+\\ &\quad \overline{u'w'}\frac{\partial U}{\partial z}+\overline{v'w'}\frac{\partial V}{\partial z} +\overline{w'w'}\frac{\partial W}{\partial z}.\\ \end{aligned} uiujSij=uuvuwuuvvvwvuwvwwwxU21(yU+xV)21(zU+xW)21(yU+xV)yV21(zV+yW)21(zU+xW)21(zV+yW)zW=uuxU+vuxV+wuxW+uvyU+vvyV+wvyW+uwzU+vwzV+wwzW.由以上式子便可以验证: U ∇ ⋅ ( u ′ u ′ ‾ ) + V ∇ ⋅ ( v ′ u ′ ‾ ) + W ∇ ⋅ ( w ′ u ′ ‾ ) = ∇ ⋅ ( U u i ′ u j ′ ‾ ) − u i ′ u j ′ ‾ ⋅ S i j U\nabla \cdot \left (\overline{u'\mathbf{u'} } \right )+V\nabla \cdot \left (\overline{v'\mathbf{u'} } \right )+W\nabla \cdot \left (\overline{w'\mathbf{u'} } \right )=\nabla \cdot \left (\mathbf{U} \overline{u_i'u_j'} \right )-\overline{u_i'u_j'}\cdot S_{ij} U(uu)+V(vu)+W(wu)=(Uuiuj)uiujSij
  • 第六项⑥是平均动能的粘性耗散速率,已经在第四项推出。
  • 第六项⑦是由于湍流产生而导致平均动能的损耗速率,已经在第五项推出。

将以上各项整合可以得到: ∂ K ∂ t + ∇ ⋅ ( K U ) + ∇ ⋅ ( U u i ′ u j ′ ‾ ) − u i ′ u j ′ ‾ ⋅ S i j = − 1 ρ ∇ ⋅ ( P U ) + 2 ν ∇ ⋅ ( U S i j ) − 2 ν S i j ⋅ S i j \frac{\partial K}{\partial t}+ \nabla \cdot { ( K \mathbf U)}+\nabla \cdot \left (\mathbf{U} \overline{u_i'u_j'} \right )-\overline{u_i'u_j'}\cdot S_{ij}=-\frac{1}{\rho}\nabla \cdot \left ( P \mathbf U\right ) +2\nu \nabla \cdot \left ( \mathbf U S_{ij}\right ) - 2\nu S_{ij}\cdot S_{ij} tK+(KU)+(Uuiuj)uiujSij=ρ1(PU)+2ν(USij)2νSijSij两边同时乘上密度 ρ \rho ρ,并注意到 ν = μ ρ \nu=\frac{\mu}{\rho} ν=ρμ,并移项可以得到: ∂ ( ρ K ) ∂ t + ∇ ⋅ ( ρ K U ) = ∇ ⋅ ( − P U + 2 μ U S i j − ρ U u i ′ u j ′ ‾ ) − 2 μ S i j ⋅ S i j + ρ u i ′ u j ′ ‾ ⋅ S i j \frac{\partial (\rho K)}{\partial t}+ \nabla \cdot { (\rho K \mathbf U)}=\nabla \cdot (-P \mathbf U + 2\mu \mathbf U S_{ij} -\rho \mathbf U \overline{u_i^{\prime}u_j^{\prime}})-2\mu S_{ij}\cdot S_{ij} +\rho \overline{u_i^{\prime}u_j^{\prime}}\cdot S_{ij} t(ρK)+(ρKU)=(PU+2μUSijρUuiuj)2μSijSij+ρuiujSij

四、说明

由于输入公式较多,难免有所错漏,请大家指正。还有第四至第七项只是验证,如果大家有更简洁的方法,欢迎私聊讨论。

五、参考资料

  • An Introduction to Computational Fluid Dynamics THE FINITE VOLUME METHOD (Second Edition). H K Versteeg and W Malalasekera
  • The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with Open FOAM® and Matlab® F. Moukalled, L. Mangani and M. Darwish
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值