fastdtw 快速计算动态时间规整库

fastdtw 是一个用于快速计算动态时间规整(Dynamic Time Warping, DTW)距离的 Python 库。动态时间规整是一种常用于比较两个时间序列或信号的相似性的算法。

动态时间规整(DTW)

什么是 DTW?
  • 定义:DTW 是一种算法,用于在可能存在时间轴上的非线性变形的情况下比较两个时间序列的相似性。DTW 可以对时间序列进行弹性变形,使得相似但时间不同步的序列能够对齐。
  • 应用场景:DTW 被广泛应用于语音识别、手写识别、姿态识别、数据挖掘等领域。
DTW 工作方式
  • 距离矩阵:首先,计算两个时间序列所有点对之间的距离,生成距离矩阵。
  • 累积距离矩阵:然后,计算累积距离矩阵,每个点的值表示从起点到该点的最小累积距离。
  • 最优路径:最后,通过回溯找到最优路径,这条路径代表两个时间序列的最佳对齐方式。
问题

标准的 DTW 算法的时间复杂度为 O(N^2),对于长时间序列,计算代价很高。

fastdtw

fastdtw 是一种近似算法,旨在快速计算 DTW 距离。它使用多分辨率逼近技术来减少计算复杂度,使其更适合处理长时间序列。

fastdtw 的工作原理
  1. 多分辨率逼近:首先,通过逐级降采样时间序列,构建多个分辨率的时间序列。
  2. 逐级对齐:从最低分辨率开始计算 DTW 距离,并逐级向高分辨率传播对齐路径。
  3. 精细调整:在最高分辨率上精细调整对齐路径,以获得近似的 DTW 距离。
fastdtw 的优势
  • 时间复杂度fastdtw 的时间复杂度为 O(N)O(N)O(N),大大提高了计算效率。
  • 适用场景:适用于需要快速计算 DTW 距离的场景,尤其是长时间序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值