GDN (Generalized Divisive Normalization) 、 PReLU (Parametric Rectified Linear Unit)

一、GDN(广义可分归一化)

(1)GDN的功能

  • GDN是一种专门为图像压缩任务设计的非线性归一化层。
  • 作用:用于减少图像特征的统计相关性,有效提高图像压缩率与重构质量。

(2)表示

GDN的计算公式为:

yi=xiβi+∑jγijxj2 y_i = \frac{x_i}{\sqrt{\beta_i + \sum_{j}\gamma_{ij} x_j^2}} yi=βi+jγijxj2xi

其中:

  • xix_ixi 是输入特征图中的第 iii 个通道。
  • yiy_iyi 是输出的第 iii 个通道。
  • βi\beta_iβiγij\gamma_{ij}γij可学习的参数,且保证非负约束 ( βi,γij≥0\beta_i, \gamma_{ij} \geq 0βi,γij0 )。

直观理解:

  • 分母部分对输入通道的特征值做平方并加权求和,形成了一个“归一化因子”,用于调整特征尺度。
  • 当某一通道或邻域通道的值很大时,对应输出被压缩,避免特征数值过大影响训练稳定性。

(3)符号说明

符号含义
xix_ixi输入特征图的第iii个通道值
yiy_iyi输出特征图的第iii个通道值
βi\beta_iβi通道iii的偏置参数(可学习)
γij\gamma_{ij}γij通道jjj对通道iii的权重(可学习)

二、PReLU(参数化ReLU激活函数)

(1)PReLU的功能

  • PReLU(Parametric Rectified Linear Unit)是一种参数化激活函数。
  • 与ReLU不同,PReLU在负区间也引入了可学习参数,用于缓解神经元死亡问题,提升网络的表达能力。

(2)PReLU的表示

PReLU定义为:

f(xi)={xi,xi≥0aixi,xi<0 f(x_i) = \begin{cases} x_i, & x_i \geq 0 \\ a_i x_i, & x_i < 0 \end{cases} f(xi)={xi,aixi,xi0xi<0

其中:

  • xix_ixi 是输入特征图中的元素值。
  • aia_iai 是可学习的斜率参数,表示负区间的斜率。

特殊情况:

  • ai=0a_i=0ai=0 时,PReLU退化为ReLU。
  • aia_iai 为常数(如0.01),即Leaky ReLU。

(3)符号说明

符号含义
xix_ixi输入特征图中的元素值
f(xi)f(x_i)f(xi)经过PReLU激活后的输出值
aia_iai负区间斜率参数(可学习)

三、分析

对比维度GDN(广义可分归一化)PReLU(参数化ReLU)
核心功能非线性归一化非线性激活函数
参数化多个参数(β,γ\beta, \gammaβ,γ单个参数 (aia_iai)
计算复杂度较高(涉及通道之间交互)较低(单元素运算)
应用场景图像压缩领域、信号相关性降低适用于通用深度学习模型
优点降低数据相关性,提高压缩效率缓解神经元死亡问题,提升模型泛化能力
缺点参数较多,计算成本高仅简单线性参数调整,难以学习复杂映射
典型使用层位置卷积层后卷积、全连接层后

四、GDN与其他常见归一化/激活函数

方法类型公式或特征是否有参数
ReLU激活函数f(x)=max(0,x)f(x)=max(0,x)f(x)=max(0,x)无参数
Leaky ReLU激活函数f(x)=max(ax,x)f(x)=max(ax,x)f(x)=max(ax,x), a为常数(如0.01)常数参数(不可学习)
PReLU激活函数f(x)=max(aix,x)f(x)=max(a_i x,x)f(x)=max(aix,x), a_i可学习可学习单参数
BatchNorm归一化方法x−μσ2+ϵγ+β\frac{x - \mu}{\sqrt{\sigma^2+\epsilon}}\gamma + \betaσ2+ϵxμγ+β可学习两个参数
GDN非线性归一化方法yi=xiβi+∑jγijxj2y_i=\frac{x_i}{\sqrt{\beta_i+\sum_j\gamma_{ij} x_j^2}}yi=βi+jγijxj2xi可学习多个参数
  • 注: GDN不同于BatchNorm,它同时归一化空间与通道维度的数据。

五、GDN和PReLU使用场景与推荐

  • GDN 推荐在图像压缩、信号处理、图像特征提取任务中使用,它能有效降低数据冗余性,提升压缩率和重构质量。

  • PReLU 推荐在通用深度学习网络设计中使用,尤其适用于大规模、深层次的神经网络,可以减少死神经元现象,提升网络训练稳定性和泛化性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值