一、GDN(广义可分归一化)
(1)GDN的功能
- GDN是一种专门为图像压缩任务设计的非线性归一化层。
- 作用:用于减少图像特征的统计相关性,有效提高图像压缩率与重构质量。
(2)表示
GDN的计算公式为:
yi=xiβi+∑jγijxj2 y_i = \frac{x_i}{\sqrt{\beta_i + \sum_{j}\gamma_{ij} x_j^2}} yi=βi+∑jγijxj2xi
其中:
- xix_ixi 是输入特征图中的第 iii 个通道。
- yiy_iyi 是输出的第 iii 个通道。
- βi\beta_iβi 和 γij\gamma_{ij}γij 是可学习的参数,且保证非负约束 ( βi,γij≥0\beta_i, \gamma_{ij} \geq 0βi,γij≥0 )。
直观理解:
- 分母部分对输入通道的特征值做平方并加权求和,形成了一个“归一化因子”,用于调整特征尺度。
- 当某一通道或邻域通道的值很大时,对应输出被压缩,避免特征数值过大影响训练稳定性。
(3)符号说明
符号 | 含义 |
---|---|
xix_ixi | 输入特征图的第iii个通道值 |
yiy_iyi | 输出特征图的第iii个通道值 |
βi\beta_iβi | 通道iii的偏置参数(可学习) |
γij\gamma_{ij}γij | 通道jjj对通道iii的权重(可学习) |
二、PReLU(参数化ReLU激活函数)
(1)PReLU的功能
- PReLU(Parametric Rectified Linear Unit)是一种参数化激活函数。
- 与ReLU不同,PReLU在负区间也引入了可学习参数,用于缓解神经元死亡问题,提升网络的表达能力。
(2)PReLU的表示
PReLU定义为:
f(xi)={xi,xi≥0aixi,xi<0 f(x_i) = \begin{cases} x_i, & x_i \geq 0 \\ a_i x_i, & x_i < 0 \end{cases} f(xi)={xi,aixi,xi≥0xi<0
其中:
- xix_ixi 是输入特征图中的元素值。
- aia_iai 是可学习的斜率参数,表示负区间的斜率。
特殊情况:
- 当 ai=0a_i=0ai=0 时,PReLU退化为ReLU。
- 当 aia_iai 为常数(如0.01),即Leaky ReLU。
(3)符号说明
符号 | 含义 |
---|---|
xix_ixi | 输入特征图中的元素值 |
f(xi)f(x_i)f(xi) | 经过PReLU激活后的输出值 |
aia_iai | 负区间斜率参数(可学习) |
三、分析
对比维度 | GDN(广义可分归一化) | PReLU(参数化ReLU) |
---|---|---|
核心功能 | 非线性归一化 | 非线性激活函数 |
参数化 | 多个参数(β,γ\beta, \gammaβ,γ) | 单个参数 (aia_iai) |
计算复杂度 | 较高(涉及通道之间交互) | 较低(单元素运算) |
应用场景 | 图像压缩领域、信号相关性降低 | 适用于通用深度学习模型 |
优点 | 降低数据相关性,提高压缩效率 | 缓解神经元死亡问题,提升模型泛化能力 |
缺点 | 参数较多,计算成本高 | 仅简单线性参数调整,难以学习复杂映射 |
典型使用层位置 | 卷积层后 | 卷积、全连接层后 |
四、GDN与其他常见归一化/激活函数
方法 | 类型 | 公式或特征 | 是否有参数 |
---|---|---|---|
ReLU | 激活函数 | f(x)=max(0,x)f(x)=max(0,x)f(x)=max(0,x) | 无参数 |
Leaky ReLU | 激活函数 | f(x)=max(ax,x)f(x)=max(ax,x)f(x)=max(ax,x), a为常数(如0.01) | 常数参数(不可学习) |
PReLU | 激活函数 | f(x)=max(aix,x)f(x)=max(a_i x,x)f(x)=max(aix,x), a_i可学习 | 可学习单参数 |
BatchNorm | 归一化方法 | x−μσ2+ϵγ+β\frac{x - \mu}{\sqrt{\sigma^2+\epsilon}}\gamma + \betaσ2+ϵx−μγ+β | 可学习两个参数 |
GDN | 非线性归一化方法 | yi=xiβi+∑jγijxj2y_i=\frac{x_i}{\sqrt{\beta_i+\sum_j\gamma_{ij} x_j^2}}yi=βi+∑jγijxj2xi | 可学习多个参数 |
- 注: GDN不同于BatchNorm,它同时归一化空间与通道维度的数据。
五、GDN和PReLU使用场景与推荐
-
GDN 推荐在图像压缩、信号处理、图像特征提取任务中使用,它能有效降低数据冗余性,提升压缩率和重构质量。
-
PReLU 推荐在通用深度学习网络设计中使用,尤其适用于大规模、深层次的神经网络,可以减少死神经元现象,提升网络训练稳定性和泛化性能。