【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)

🌟 嗨,你好,我是 青松 !

🌈 希望用我的经验,让“程序猿”的AI学习之路走的更容易些,若我的经验能为你前行的道路增添一丝轻松,我将倍感荣幸!共勉~


【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)


词嵌入核心问题:

一、动因篇

  • 💯 什么是词向量化技术?
  • 💯 如何让向量具有语义信息?

二、基于统计的方法

  • 💯 如何基于计数的方法表示文本?
  • 💯 上下文中的窗口大小是什么意思?
  • 💯 如何统计语料的共现矩阵?
  • 💯 基于计数的表示方法存在哪些问题?

三、基于推理的方法

  • 💯 Word2Vec的两种模型分别是什么?
  • 💯 Word2Vec 中 CBOW 指什么?
  • 💯 Word2Vec 中 Skip-gram 指什么?
  • 💯 CBOW 和 Skip-gram 哪个模型的词嵌入更好?

四、问题优化篇

  • 💯 Word2Vec训练中存在什么问题?
  • 💯 Word2Vec如何优化从中间层到输出层的计算?
    • 用负采样优化中间层到输出层的计算
    • 负采样方法的关键思想
    • 负采样的采样方法
  • 💯 为什么说Word2vec的词向量是静态的?
  • 💯 Word2vec的词向量存在哪些问题?

💯 上下文中的窗口大小是什么意思?

上下文是指某个居中单词的周围词汇。这里,我们将上下文的大小(即周围的单词有多少个)称为窗口大小(window size)。窗口大小为1,上下文包含左右各1个单词;窗口大小为2,上下文包含左右各2个单词。


窗口大小为2的上下文例子。在关注goodbye时,将其左右各2个单词用作上下文

词嵌入(Word Embedding)在自然语言处理NLP)中扮演着至关重要的角色,它将单词映射到一个连续的向量空间中,使得语义或句法上相似的单词在向量空间中彼此接近。这种技术大幅提升了机器对自然语言的理解能力。 参考资源链接:[自然语言处理入门学习.pdf](https://wenku.csdn.net/doc/1qpgm42axa?spm=1055.2569.3001.10343) 首先,推荐从《自然语言处理入门学习.pdf》开始学习,这份资料详细介绍了词嵌入的概念和实现方式,并且深入讨论了词嵌入在深度学习中的重要性。通过对这份资料的学习,你可以了解词嵌入是如何通过训练一个深度学习模型来捕捉单词的语义信息,并学会如何利用词嵌入改进NLP任务的效果。 高效实现词嵌入模型的关键在于选择合适的模型架构以及训练数据。例如,Word2Vec和GloVe是两种常用的词嵌入模型。Word2Vec通过预测单词的上下文或根据上下文预测单词来学习词向量,而GloVe则基于单词共现矩阵来学习词向量。Transformer模型中的BERT等也使用了词嵌入,但它们是在更大的上下文中进行预训练,以捕捉更丰富的语言特征。 在实现高效的词嵌入模型时,可以考虑以下几点: 1. 使用大规模语料库进行预训练,以确保模型能够学习到丰富的语言特征。 2. 选择合适的网络架构和参数设置,如调整隐藏层的大小、学习率等。 3. 利用技术如负采样和分层softmax来提高训练效率。 4. 考虑使用预训练的词嵌入模型,如GloVe或FastText,这些模型已经在大规模数据集上预训练,可以直接用于下游任务,节省时间和计算资源。 5. 在特定任务上进行微调,以便词嵌入更好地适应任务的特定需求。 通过系统学习《自然语言处理入门学习.pdf》中的基础知识,加上对高效词嵌入实现方法的掌握,你将能够在自然语言处理领域中更有效地应用词嵌入模型,解决实际问题。此外,随着对词嵌入理解的加深,也可以进一步探索更复杂的模型,如Transformer和BERT,这些模型使用了类似的技术来实现更为强大的语言理解能力。 参考资源链接:[自然语言处理入门学习.pdf](https://wenku.csdn.net/doc/1qpgm42axa?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值