引言
前期已分享375多种基础优化算法(【收藏不迷路】超375种群体智能优化算法-Matlab代码免费获取(截至2024.11.26))。根据“没有免费的午餐”,没有一个单一的群体智能优化算法可以解决所有的优化问题,每一个群体智能优化算法都有局限性和限制。所以很多学者根据自身的专业问题需求,对基础优化算法进行了改进和提升,以期获得更为优秀的性能。利用改进策略可以缓解优化算法在大规模优化问题中存在早熟收敛、易陷入局部最优和收敛精度低的缺点。
前期也已分享了多种【仅需一行】系列的改进策略(点击跳转):
【仅需一行】13种变异策略改进所有群智能优化算法(附matlab代码)
【效果突出】优化算法改进策略:21种混沌映射方法-参数混沌化(附matlab代码)
用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)
【仅需一行】Nelder‑Mead单纯形法(Nelder‑Mead simplex)
必备!10种分布函数,仅需一行可改进所有群优化算法(附matlab代码)
本期分享常用的改进策略-12种反向学习策略,魔改反向学习策略的思路找对,发文从中文核心到一区SCI不在话下。具体的分布函数如下(如有其他的反向学习,可后台私信我们持续补充哦)。仅需一行代码即可改进所有群优化算法,非常好用,小白也会,快来学习吧。
关于12种反向学习策略,代码中给出了对应的参考文献,请阅读相关文献,本期不在赘述。
首先,12种反向学习策略的编码工作已经帮各位小侠客们写好了,集成在Opposition_Based_Learning.m函数中,只需要调用即可,非常方便。Opposition_Based_Learning函数仅需要一行代码(即调用API),可即插即用在任何优化算法中。
以2024年8月发表的一区算法-极光优化算法PLO为示例算法,改进后的算法暂用名OBL-PLO,函数OBL-PLO.m中给出了具体的改动方式,改动量仅一行,非常好用,新手小白也能快速上手,极易快速方便扩展到其他算法。在经典测试函数上进行测试
从下面收敛图、箱线图也能看出,OBL-PLO改进效果十分客观。(友情提示:和其他策略配合使用,改进效果会更佳哦)
结果简要展示
参考文献
Matlab代码下载
微信搜索并关注-优化算法侠(英文名:Swarm-Opti),或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
👇👇👇
思路找对,发文不愁!12种反向学习策略,仅需一行可改进任意优化算法(附matlab代码)
点击链接跳转:
375种群优化算法免费下载-matlab
https://mp.weixin.qq.com/s/AsFTBmaZ8UOgES9TQuL0Kg?token=1339859150&lang=zh_CN
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!