【python】最优化方法之一维搜索(黄金分割法+斐波那契法)

1.概念

\qquad 一维搜索是最优化方法最简单的一种,即求一个在(a,b)内,连续下单峰函数 f ( x ) f(x) f(x)的极小值。所谓下单峰函数就是只有一个极小值的函数。

2.遍历搜索

\qquad 这个问题看似简单,我们只需要指定步长,从区间左端点搜索到右端点,每次根据步长新产生一个值,比对它和前两个值的大小。记录三个值从左到由依次为 x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x3,若出现 x 1 &gt; x 2 &lt; x 3 x_1&gt;x_2&lt;x_3 x1>x2<x3的情况,则说明极小值点必定落在 ( x 1 , x 3 ) (x_1,x_3) x1,x3之间。因此如果指定了最终区间不得超过eps的话,那么搜索步长不得大于0.5eps。
我们很快就会发现,这种遍历法虽然算法简单,但是迭代次数多,浪费资源严重,因此我们需要更快地得到最终区间的方法。在最优化方法这个数学分支中,可以证明斐波拉契法是压缩比(在同样迭代次数下开始区间和最终区间的比值)最高的方法,黄金分割比相比它压缩比小一些,但是算法会比较简单,占用计算资源也会略少。

3.优化算法

3.1.一维搜索原则

\qquad 首先在初始区间[a,b]中取两个点 x 1 , x 2 ( x 1 &lt; x 2 ) x_1,x_2(x_1&lt;x_2) x1,x2(x1<x2),计算 f ( a ) , f ( x 1 ) , f ( x 2 ) , f ( b ) f(a),f(x_1),f(x_2),f(b) f(a),f(x1),f(x2),f(b)的值。由于 f ( x ) f(x) f(x)在(a,b)为下单峰函数,即有唯一的极小值,因此a或b必定不是极小值点。
示例图
1.若 f ( x 1 ) &lt; f ( x 2 ) f(x_1)&lt;f(x_2) f(x1)<f(x2)则说明 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)我下降段,极小值 x ∗ x^* x点应该在 x 1 x_1 x1的右侧,因此修改查找区间为 ( x 1 , b ) (x_1,b) (x1,b)
2.若 f ( x 1 ) &gt; f ( x 2 ) f(x_1)&gt;f(x_2) f(x1)>f(x2)则说明 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)我上升段,极小值 x ∗ x^* x点应该在 x 2 x_2 x2的左侧,因此修改查找区间为 ( a , x 2 ) (a,x_2) (a,x2)
一维搜索算法的核心就是解决取 x 1 和 x 2 x_1和x_2 x1x2的问题

3.2.黄金分割法

几何画板
\qquad 设黄金分割比为k,取 x 1 = b − ( b − a ) ∗ k , x 2 = a + ( b − a ) ∗ k x_1=b-(b-a)*k,x_2=a+(b-a)*k x1=b(ba)k,x2=a+(ba)k
在一维搜索中,如果满足条件1,那么需要在 ( x 1 , b ) (x_1,b) (x1,b)取值。设 ρ = 1 − k \rho=1-k ρ=1k
C D ‾ = 1 − ρ , D E ‾ = ρ , E F ‾ = 1 − ρ \overline{CD}=1-\rho,\overline{DE}=\rho,\overline{EF}=1-\rho CD=1ρ,DE=ρ,EF=1ρ由于在黄金分割比的作用下, 1 − ρ 1 = 1 − 2 ρ 1 − ρ \frac{1-\rho}{1}=\frac{1-2\rho}{1-\rho} 11ρ=1ρ12ρ,因此 D E G H = D E D F = D F C F = k ≈ 0.618 \frac{DE}{GH}=\frac{DE}{DF}=\frac{DF}{CF}=k≈0.618 GHDE=DFDE=CFDF=k0.618
因此若将E点平移至GH线段,将G的横坐标当做a,H的横坐标当做b,它就相当于是 x 1 x_1 x1的位置,因此只需要计算 x 2 = a + ( b − a ) ∗ k = b − ( b − a ) ∗ ρ x_2=a+(b-a)*k=b-(b-a)*\rho x2=a+(ba)k=b(ba)ρ即可
同理,如果满足条件2, D E I J = D E C E = C E C F = k ≈ 0.618 \frac{DE}{IJ}=\frac{DE}{CE}=\frac{CE}{CF}=k≈0.618 IJDE=CEDE=CFCE=k0.618D点相当于IJ线段的 x 2 x_2 x2的位置,因此只需要计算 x 1 = b − ( b − a ) ∗ k = a + ( b − a ) ∗ ρ x_1=b-(b-a)*k=a+(b-a)*\rho x1=b(ba)k=a+(ba)ρ

Code Block

编写用户自定义函数的代码讲解参见以下链接:

[动态创建数学函数(CSDN])
以下为黄金分割法进行一维搜索的代码:

from math import *
import matplotlib.pyplot as plt
from pylab import *
# 通用函数f(x)靠用户录入
def function(x):
    fx = str_fx.replace("x", "%(x)f")  # 所有的"x"换为"%(x)function"
    return eval(fx % {"x": x})  # 字典类型的格式化字符串,将所有的"x"替换为变量x


# 绘图函数:给定闭区间(绘图间隔),绘图间隔默认为0.05,若区间较小,请自行修改
def drawf(a,b,interp=0.05):
    x = [a+ele*interp for ele in range(0, int((b-a)/interp))]
    y = [function(ele) for ele in x]
    plt.figure(1)
    plt.plot(x, y)
    xlim(a, b)
    title(init_str, color="b")
    plt.show()

# 黄金分割法进行一维搜索的函数
def gold_div_search(a,b,esp):
    data=list()
    x1=a+rou*(b-a)
    x2=b-rou*(b-a)
    data.append([a,x1,x2,b])
    while(b-a>esp):
        if function(x1)>function(x2):  #如果f(x1)>function(x2),则在区间(x1,b)内搜索
            a=x1
            x1=x2
            x2=b-rou*(b-a)
            plt.plot(x2,function(x2),'r*')
        elif function(x1)<function(x2):  #如果f(x1)<function(x2),则在区间(a,x2)内搜索
            b=x2
            x2=x1
            x1=a+rou*(b-a)
            plt.plot(x1,function(x1),'r*')
        else:  #如果f(x1)=function(x2),则在区间(x1,x2)内搜索
            a=x1
            b=x2
            x1=a+rou*(b-a)
            x2=b-rou*(b-a)
            plt.plot(x1,function(x1),'r*',x2,function(x2),'r*')
        data.append([a,x1,x2,b])
    with open("一维搜索(黄金分割法).txt",mode="w",encoding="utf-8")as a_file: 
    # 保存的txt文件在程序的同目录下
        for i in range(0,len(data)):
            a_file.write("%d:\t"%(i+1))
            for j in range(0,4):
                a_file.write("function(%.3f)=%.3f\t"%(data[i][j],function(data[i][j])))
            a_file.write("\n")
    print("写入文件成功!")
    return [a,b]

rou = 1-(sqrt(5)-1)/2  # 1-rou为黄金分割比
init_str = input("请输入一个函数,默认变量为x:\n")  # 输入的最初字符串
para=input("请依次输入一维搜索的区间a,b和最终区间的精确值(用空格分隔)").split() # 导入区间
para=[float(ele) for ele in para]
a,b,esp=para
str_fx = init_str.replace("^", "**")  # 将所有的“^"替换为python的幂形式"**"
gold_div_search(a,b,esp)  # 调用黄金分割法并保存文件
drawf(a,b,(b-a)/2000)  # 绘制函数图形

以下为交互式界面的效果:(请在Shell或Pycharm中的Python Console里面运行)

    请输入一个函数,默认变量为x:
    atan(x)-log(2*x+1)+4*x**2-3*x
    请依次输入一维搜索的区间a,b和最终区间的精确值(用空格分隔)0 1 0.001
    写入文件成功!

文本文档数据:(如用此程序运行,保存的文本文档与程序同目录

1: f(0.000)=0.0000000 f(0.382)=-0.7649875 f(0.618)=-0.5773825 f(1.000)=0.6867859
2: f(0.000)=0.0000000 f(0.236)=-0.6401822 f(0.382)=-0.7649875 f(0.618)=-0.5773825
3: f(0.236)=-0.6401822 f(0.382)=-0.7649875 f(0.472)=-0.7485370 f(0.618)=-0.5773825
4: f(0.236)=-0.6401822 f(0.326)=-0.7399126 f(0.382)=-0.7649875 f(0.472)=-0.7485370
5: f(0.326)=-0.7399126 f(0.382)=-0.7649875 f(0.416)=-0.7669244 f(0.472)=-0.7485370
6: f(0.382)=-0.7649875 f(0.416)=-0.7669244 f(0.438)=-0.7630202 f(0.472)=-0.7485370
7: f(0.382)=-0.7649875 f(0.403)=-0.7673941 f(0.416)=-0.7669244 f(0.438)=-0.7630202
8: f(0.382)=-0.7649875 f(0.395)=-0.7669382 f(0.403)=-0.7673941 f(0.416)=-0.7669244
9: f(0.395)=-0.7669382 f(0.403)=-0.7673941 f(0.408)=-0.7673906 f(0.416)=-0.7669244
10: f(0.395)=-0.7669382 f(0.400)=-0.7672874 f(0.403)=-0.7673941 f(0.408)=-0.7673906
11: f(0.400)=-0.7672874 f(0.403)=-0.7673941 f(0.405)=-0.7674185 f(0.408)=-0.7673906
12: f(0.403)=-0.7673941 f(0.405)=-0.7674185 f(0.406)=-0.7674176 f(0.408)=-0.7673906
13: f(0.403)=-0.7673941 f(0.404)=-0.7674129 f(0.405)=-0.7674185 f(0.406)=-0.7674176
14: f(0.404)=-0.7674129 f(0.405)=-0.7674185 f(0.406)=-0.7674196 f(0.406)=-0.7674176
15: f(0.405)=-0.7674185 f(0.406)=-0.7674196 f(0.406)=-0.7674194 f(0.406)=-0.7674176
16: f(0.405)=-0.7674185 f(0.405)=-0.7674193 f(0.406)=-0.7674196 f(0.406)=-0.7674194

可以看出我们的最终区间为(0.405,0.406),精度为0.001.
黄金分割法查找的点会被记录在matplotlib绘制的函数图像上,一目了然,可以看出,在最终区间精度为0.001的情况下,我们的算法收敛速度很快。
总览
图像2
\qquad 绘图可以看出函数在极小点附近非常平坦,极小值点差不多在0.405的位置,与文本文档的数据一致。

3.3.斐波拉契法

\qquad 斐波拉契法是一维搜索中压缩比最高的搜索算法。斐波拉契法基于斐波拉契数列产生比例值,斐波拉契数列 { F n } \lbrace F_n \rbrace {Fn}的定义如下:
F 1 = F 2 = 1 , F n + 2 = F n + 1 + F n F_1=F_2=1,F_{n+2}=F_{n+1}+F_{n} F1=F2=1,Fn+2=Fn+1+Fn
取分点时, x 1 = a + F n − 2 F n ( b − a ) , x 2 = a + F n − 1 F n ( b − a ) x_1=a+\frac{F_{n-2}}{F_n}(b-a),x_2=a+\frac{F_{n-1}}{F_n}(b-a) x1=a+FnFn2(ba),x2=a+FnFn1(ba)

{ x 1 − a = F n − 2 F n ( b − a ) x 2 − a = F n − 1 F n ( b − a ) x 2 − x 1 = F n − 1 − F n − 2 F n ( b − a ) = F n − 3 F n ( b − a ) b − x 2 = F n − F n − 1 F n ( b − a ) = F n − 2 F n ( b − a ) \begin{cases} x_1-a=\frac{F_{n-2}}{F_n}(b-a) \\x_2-a=\frac{F_{n-1}}{F_n}(b-a) \\x_2-x_1=\frac{F_{n-1}-F_{n-2}}{F_n}(b-a)=\frac{F_{n-3}}{F_n}(b-a) \\b-x_2=\frac{F_{n}-F_{n-1}}{F_n}(b-a)=\frac{F_{n-2}}{F_n}(b-a) \end{cases} x1a=FnFn2(ba)x2a=FnFn1(ba)x2x1=FnFn1Fn2(ba)=FnFn3(ba)bx2=FnFnFn1(ba)=FnFn2(ba)

几何画板
1.若 x 1 < x 2 x_1<x_2 x1x2,则取新区间为 [ a , x 2 ] [a,x_2] [a,x2],则 D E ‾ = F n − 3 F n ( b − a ) , I J ‾ = F n − 1 F n ( b − a ) , C D ‾ = F n − 2 F n ( b − a ) , C D I J = F n − 2 F n − 1 , 因 此 D 相 当 于 I J 中 的 x 2 的 位 置 只 需 要 再 取 x 1 = a + F n − 3 F n − 1 ( b − a ) 即 可 \overline{DE}=\frac{F_{n-3}}{F_n}(b-a),\overline{IJ}=\frac{F_{n-1}}{F_n}(b-a),\overline{CD}=\frac{F_{n-2}}{F_n}(b-a), \\ \frac{CD}{IJ}=\frac{F_{n-2}}{F_{n-1}},因此D相当于IJ中的x_2的位置\\只需要再取x_1=a+\frac{F_{n-3}}{F_{n-1}}(b-a)即可 DE=FnFn3(ba)IJ=FnFn1(ba),CD=FnFn2(ba),IJCD=Fn1Fn2DIJx2x1=a+Fn1Fn3(ba)

2.若 x 1 &gt; x 2 x_1&gt;x_2 x1>x2,则取新区间为 [ x 1 , b ] [x_1,b] [x1,b],则 D E ‾ = F n − 3 F n ( b − a ) , G H ‾ = F n − 1 F n ( b − a ) , C D ‾ = F n − 2 F n ( b − a ) , D E G H = F n − 3 F n − 1 , 因 此 D 相 当 于 G H 中 的 x 1 的 位 置 只 需 要 再 取 x 2 = a + F n − 2 F n − 1 ( b − a ) 即 可 \overline{DE}=\frac{F_{n-3}}{F_n}(b-a),\overline{GH}=\frac{F_{n-1}}{F_n}(b-a),\overline{CD}=\frac{F_{n-2}}{F_n}(b-a), \\ \frac{DE}{GH}=\frac{F_{n-3}}{F_{n-1}},因此D相当于GH中的x_1的位置\\只需要再取x_2=a+\frac{F_{n-2}}{F_{n-1}}(b-a)即可 DE=FnFn3(ba)GH=FnFn1(ba),CD=FnFn2(ba),GHDE=Fn1Fn3DGHx1x2=a+Fn1Fn2(ba)

对于要求精度esp,取压缩比 C = b − a e s p , F n = m i n { x ∣ x ≥ C , x ∈ N + } C=\frac{b-a}{esp},F_n=min\lbrace x|x≥C,x∈N^+\rbrace C=espbaFn=min{xxC,xN+},按照上述方法迭代至分母为 F 2 F_2 F2为止,最后按照以下方法进行:
在这里插入图片描述

Code Block

首先我们需要一个生产斐波那契数列(Fabonaci)的函数:

# 在本案例中,使用一次性生成斐波拉契列表的方法算法复杂度更低
# 生成的斐波拉契数列F(0)=0,F(1)=F(2)=1,剩余项和普通斐波拉契数列类似
def Fab_list(Fmax):
    a,b=0,1
    Fablist = [a,b]  # 返回一个列表
    while Fablist[-1]< Fmax:
        a,b = b,a+b
        Fablist.append(b)
    return Fablist  

再按照斐波那契法迭代编写算法即可:
通用函数的编写仍然参考以下链接:
[动态创建数学函数(CSDN)]
注:需要安装matplotlib模块、pylab模块和Pillow模块,版本为python3

步骤:
Windows键+R,在【运行】窗口输入cmd并回车,在命令提示行下输入:
pip install matplotlib
pip install pylab
pip install Pillow
即可

from math import *
import matplotlib.pyplot as plt  # 绘图模块
from pylab import *  # 绘图辅助模块



# 通用函数f(x)靠用户录入
def function(x):
    fx = str_fx.replace("x", "%(x)f")  # 所有的"x"换为"%(x)function"
    return eval(fx % {"x": x})  # 字典类型的格式化字符串,将所有的"x"替换为变量x


# 绘图函数:给定闭区间(绘图间隔),绘图间隔默认为0.05,若区间较小,请自行修改
def drawf(a, b, interp=0.05):
    x = [a + ele * interp for ele in range(0, int((b - a) / interp))]
    y = [function(ele) for ele in x]
    plt.figure(1)
    plt.plot(x, y)
    xlim(a, b)
    title(init_str, color="b")  # 标注函数名
    plt.show()
    return "绘图完成!"


# 在本案例中,使用一次性生成斐波拉契列表的方法算法复杂度更低
# 生成的斐波拉契数列F(0)=0,F(1)=F(2)=1,剩余项和普通斐波拉契数列类似
def Fab_list(Fmax):
    a,b=0,1
    Fablist = [a,b]  # 返回一个列表
    while Fablist[-1]< Fmax:
        a,b = b,a+b
        Fablist.append(b)
    Fablist.pop()  # 舍掉最后一个元素
    return Fablist    


def Fabonaci_search(a, b, Fab):
    n = len(Fab)-1  # 获取斐波那契数列的长度
    if n < 3:
        return "精度过低,无法进行斐波那契一维搜索"
    data = list()
    data.append([a, b])
    x1 = a + Fab[n - 2]/Fab[n] * (b - a)
    x2 = a + Fab[n - 1]/Fab[n] * (b - a)
    t = n
    while (t > 3):
        if function(x1) > function(x2):  # 如果f(x1)>f(x2),则在区间(x1,b)内搜索
            a = x1
            x1 = x2
            x2 = a + Fab[t - 1]/Fab[t] * (b - a)
            plt.plot(x2, function(x2), 'r*')
            data.append([x1, b])
        elif function(x1) < function(x2):  # 如果f(x1)<(x2),则在区间(a,x2)内搜索
            b = x2
            x2 = x1
            x1 = a + Fab[t - 2]/Fab[t]* (b - a)
            plt.plot(x1, function(x1), 'r*')
            data.append([a, x2])
        else:  # 如果f(x1)=function(x2),则在区间(x1,x2)内搜索
            a = x1
            b = x2
            x1 = a + Fab[t - 2]/Fab[t] * (b - a)
            x2 = a + Fab[t - 1]/Fab[t] * (b - a)
            plt.plot(x1, function(x1), 'r*', x2, function(x2), 'r*')
        data.append([x1, x2])
        t -= 1
    x1 = a + 0.5 * (b - a)  # 斐波那契数列第3项和第2项的比
    x2 = x1 + 0.1 * (b - a)  # 偏离一定距离,人工构造的点
    if function(x1) > function(x2):  # 如果f(x1)>function(x2),则在区间(x1,b)内搜索
        plt.plot(x2, function(x2), 'r*')
        data.append([x1, b])
        a = x1
    elif function(x1) < function(x2):  # 如果f(x1)<function(x2),则在区间(a,x2)内搜索
        plt.plot(x1, function(x1), 'r*')
        data.append([a, x2])
        b = x2
    else:  # 如果f(x1)=function(x2),则在区间(x1,x2)内搜索
        plt.plot(x1, function(x1), 'r*', x2, function(x2), 'r*')
        data.append([x1, x2])
    with open(r"C:\Users\ouni\桌面\一维搜索(黄金分割法).txt", mode="w", encoding="utf-8")as a_file:
        for i in range(0, len(data)):
            a_file.write("%d:\t" % (i + 1))
            for j in range(0, 2):
                a_file.write("f(%.3f)=%.7f\t" % (data[i][j], function(data[i][j])))
            a_file.write("\n")
    print("写入文件成功!")
    return [a, b]


init_str = input("请输入一个函数,默认变量为x:\n")  # 输入的最初字符串
para = input("请依次输入一维搜索的区间a,b和最终区间的精确值(用空格分隔)").split()  # 导入区间
para = [float(ele) for ele in para]  # 将输入的字符串转换为浮点数
low, high, esp = para  # 输入参数列表(最小值、最大值和最终精度)
str_fx = init_str.replace("^", "**")  # 将所有的“^"替换为python的幂形式"**"
print(Fabonaci_search(low, high, Fab_list(int(ceil((high-low)/esp)))))  # 传入区间和斐波拉契列表
drawf(low, high, (high - low) / 2000)  # 默认精度是2000个点


以下代码请在交互式界面运行:

请输入一个函数,默认变量为x:
e^(-x)+x^2
请依次输入一维搜索的区间a,b和最终区间的精确值(用空格分隔)0 1 0.01
写入文件成功!
[0.3402663805075117, 0.35279320792829183]
关闭绘图框以继续交互式命令

文本文档如下:

1: f(0.000)=1.0000000 f(1.000)=1.3678794
2: f(0.000)=1.0000000 f(0.382)=0.8284208
3: f(0.236)=0.8454509 f(0.382)=0.8284208
4: f(0.382)=0.8284208 f(0.618)=0.9209301
5: f(0.382)=0.8284208 f(0.472)=0.8465897
6: f(0.236)=0.8454509 f(0.382)=0.8284208
7: f(0.326)=0.8280571 f(0.382)=0.8284208
8: f(0.236)=0.8454509 f(0.326)=0.8280571
9: f(0.292)=0.8320851 f(0.326)=0.8280571
10:f(0.326)=0.8280571 f(0.382)=0.8284208
11: f(0.326)=0.8280571 f(0.347)=0.8272109
12: f(0.347)=0.8272109 f(0.382)=0.8284208
13: f(0.347)=0.8272109 f(0.361)=0.8273036
14: f(0.326)=0.8280571 f(0.347)=0.8272109
15: f(0.340)=0.8273620 f(0.347)=0.8272109
16: f(0.347)=0.8272109 f(0.361)=0.8273036
17: f(0.347)=0.8272109 f(0.354)=0.8271921
18: f(0.340)=0.8273620 f(0.353)=0.8271855
}

图形如下:
在这里插入图片描述
在这里插入图片描述
可以看出函数的极小值确实在0.35附近,与文本文档标定的一致。
注:以上程序请在Shell或Cmd中运行,如需当做模块运行,请在主要程序的前面加上if __name__=="__main__"

  • 25
    点赞
  • 171
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
一维搜索是一种优化算,旨在通过在一维空间中搜索最佳解决方案来最小化或最大化目标函数。Matlab提供了几种一维搜索的实现。以下是一些示例程序。 1. 黄金分割法 ``` function [xopt, fopt, iter] = golden_section(f, a, b, tol) % f: 目标函数 % a, b: 搜索区间 % tol: 容差 % xopt: 最优解 % fopt: 最优值 % iter: 迭代次数 tau = (sqrt(5) - 1) / 2; % 黄金分割比例 c = b - tau * (b - a); d = a + tau * (b - a); f_c = f(c); f_d = f(d); iter = 0; while abs(b - a) > tol iter = iter + 1; if f_c < f_d b = d; d = c; c = b - tau * (b - a); f_d = f_c; f_c = f(c); else a = c; c = d; d = a + tau * (b - a); f_c = f_d; f_d = f(d); end end xopt = (a + b) / 2; fopt = f(xopt); end ``` 2. 斐波那契搜索 ``` function [xopt, fopt, iter] = fibonacci_search(f, a, b, tol) % f: 目标函数 % a, b: 搜索区间 % tol: 容差 % xopt: 最优解 % fopt: 最优值 % iter: 迭代次数 N = 100; % 斐波那契数列长度 fib = [1, 1]; for i = 3:N fib(i) = fib(i-1) + fib(i-2); end k = find(fib <= (b-a)/tol, 1, 'last'); x1 = a + fib(k-2) / fib(k) * (b - a); x2 = a + fib(k-1) / fib(k) * (b - a); f1 = f(x1); f2 = f(x2); iter = 0; while abs(b - a) > tol && iter < N iter = iter + 1; if f1 < f2 b = x2; x2 = x1; f2 = f1; x1 = a + fib(k-iter-2) / fib(k-iter) * (b - a); f1 = f(x1); else a = x1; x1 = x2; f1 = f2; x2 = a + fib(k-iter-1) / fib(k-iter) * (b - a); f2 = f(x2); end end xopt = (a + b) / 2; fopt = f(xopt); end ``` 3. 坐标下降 ``` function [xopt, fopt, iter] = coordinate_descent(f, x0, tol) % f: 目标函数 % x0: 初始解 % tol: 容差 % xopt: 最优解 % fopt: 最优值 % iter: 迭代次数 n = length(x0); x = x0; iter = 0; while true iter = iter + 1; for i = 1:n xold = x(i); x(i) = fminbnd(@(t) f(replace(x, i, t)), -100, 100, optimset('TolX', tol)); if abs(x(i) - xold) < tol break end end if i == n break end end xopt = x; fopt = f(xopt); end function y = replace(x, i, xi) % 替换x中的第i个元素为xi,返回新的向量 y = x; y(i) = xi; end ``` 以上是几个简单的一维搜索示例程序,可以根据需要进行修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非线性光学元件

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值