R语言:平稳性的检验1

对序列的平稳性的检验有两种方法:一种是图检验方法,即根据时序图和自相关图所显示的特征做出判断;一种是统计检验方法,即构造检验统计量进行假设检验。

图检验方法是一种操作简便、运用广泛的平稳性判别方法。它的缺点是判别结论带有很强的主观色彩,所以最好能用统计检验方法加以辅助判断。

目前最常用的平稳性统计检验方法是单位根检验(unit root test)。

图检验

时序图检验
根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动范围有界的特点。如果序列的时序图显示出该序列有明显的趋势性或周期性,那么它通常不是平稳序列。根据这个性质,对于很多非平稳序列,可以通过查看它的时序图将其识别出来。(一定能判断不是平稳序列,不一定能判断是平稳序列)

1.绘制1964-1999年中国纱年产量序列时序图。

> sha<-read.table("file4.csv",sep=",",header=T)
> output<-ts(sha$output,start=1964)
> plot(output)

在这里插入图片描述
上图给我们提供的信息非常明确,中国纱年产量序列有明显的递增趋势,所以它一定不是平稳序列。

2.绘制1962年至1975年12月平均每头奶牛月产奶量序列时序图。

> a<-read.table("file5.csv",sep=",",header=T)
> milk<-ts(a$milk,start=c(1962,1),frequency=12)
> plot(milk)

在这里插入图片描述
上图清晰地显示平均每头奶牛的月产奶量以年为周期呈现出规则的周期性。除此之外,还有明显的逐年递增趋势,显然该序列也一定不是平稳序列。

3.绘制1949-1998年北京市每年最高气温序列时序图。

> b<-read.table("file6.csv",sep=",",header=T)
> temp<-ts(b$temp,start=1949)
> plot(temp)

在这里插入图片描述
上图显示北京市每年的最高气温始终围绕在37℃附近随机波动,没有明显趋势或周期,基本可以视为平稳序列。但为了稳妥起见,我们还需要利用自相关图进一步辅助识别。

自相关图检验
平稳序列通常具有短期相关性,该性质用自相关系数来描述就是随着延迟期数k的增加,平稳序列的自相关系数会很快地衰减向零,反之,非平稳序列的自相关系数衰减向零的速度通常比较慢,这就是我们利用自相关图进行平稳性判断的标准。
1.绘制1964-1999年中国纱年产量序列自相关图。

> acf(output,lag=25)

在这里插入图片描述
从上图中我们发现序列的自相关系数递减到零的速度相当缓慢,在很长的延迟时期里,自相关系数一直为正,而后又一直为负。在自相关图上显示出明显的三角对称性,这是具有单调趋势的非平稳序列的一种典型的自相关图形式,这和该序列时序图所显示的显著的单调递增特点是一致的。

2.绘制1962年至1975年12月平均每头奶牛月产奶量序列自相关图

> acf(milk)

在这里插入图片描述
自相关图显示序列自相关系数长期位于零轴的一边,这是具有单调趋势序列的典型特征。同时自相关图呈现出明显的正弦波动规律,这是具有周期变化规律的非平稳序列的典型特征。自相关图显示出来的这两个性质和该序列时序图显示出来的带长期递增趋势的周期性是非常吻合的。

3.绘制1949-1998年北京市每年最高气温序列自相关图

> acf(temp)

在这里插入图片描述
自相关图显示该序列的自相关系数一直都比较小,始终控制在2倍标准差范围以内,可以认为该序列自始至终都在零轴附近波动,这是随机性非常强的平稳时间序列通常具有的自相关特征。

  • 3
    点赞
  • 0
    评论
  • 32
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页

打赏作者

花農

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值