机器学习-逻辑回归-信用卡检测任务

信用卡欺诈检测

基于信用卡交易记录数据建立分类模型来预测哪些交易记录是异常的哪些是正常的。

任务流程:

  • 加载数据,观察问题
  • 针对问题给出解决方案
  • 数据集切分
  • 评估方法对比
  • 逻辑回归模型
  • 建模结果分析
  • 方案效果对比

主要解决问题:

(1)在此项目中,我们首选对数据进行了观察,发现了其中样本不均衡的问题,其实我们做任务工作之前都一定要先进行数据检查,看看数据有什么问题,针对这些问题来选择解决方案。

(2)这里我们提出了两种方法,下采样和过采样,两条路线来进行对比实验,任何实际问题来了之后,我们都不会一条路走到黑的,没有对比就没有伤害,通常都会得到一个基础模型,然后对各种方法进行对比,找到最合适的,所以在任务开始之前,一定得多动脑筋多一手准备,得到的结果才有可选择的余地。

(3)在建模之前,需要对数据进行各种预处理的操作,比如数据标准化,缺失值填充等,这些都是必要操作,由于数据本身已经给定了特征,此处我们还没有提到特征工程这个概念,后续实战中我们会逐步引入,其实数据预处理的工作是整个任务中最为最重也是最苦的一个阶段,数据处理的好不好对结果的影响是最大的。

(4)先选好评估方法,再进行建模。建模的目的就是为了得到结果,但是我们不可能一次就得到最好的结果,肯定要尝试很多次,所以一定得有一个合适的评估方法,可以用这些通用的,比如Recall,准确率等,也可以根据实际问题自己指定评估指标。

(5)选择合适的算法,这里我们使用的是逻辑回归,也详细分析了其中的细节,这是因为我们刚刚讲解完逻辑回归的原理就拿它来练手了,之后我们还会讲解其他算法,并不一定非要用逻辑回归来完成这个任务,其他算法可能效果会更好。但是有一点我希望大家能够理解就是在机器学习中并不是越复杂的算法越实用,恰恰相反,越简单的算法反而应用的越广泛。逻辑回归就是其中一个典型的代表了,简单实用,所以任何分类问题都可以把逻辑回归当做一个待比较的基础模型了。

(6)模型的调参也是很重要的,之前我们通过实验也发现了不同的参数可能会对结果产生较大的影响,这一步也是必须的,后续实战内容我们还会来强调调参的细节,这里就简单概述一下了。对于参数我建立大家在使用工具包的时候先看看其API文档,知道每一个参数的意义,再来实验选择合适的参数值。

(7)得到的结果一定要和实际任务结合在一起,有时候虽然得到的结果指标还不错,但是实际应用却成了问题,所以测试环节也是必不可少的。到此,这个项目就给大家介绍到这里了,在实践中学习才能成长的更快,建议大家一定使用提供的Notebook代码文件来自己完成一遍上述操作。

导入工具包:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np


%matplotlib inline

 

数据读取
 

data = pd.read_csv("creditcard.csv")

首先拿到数据查看数据的标签分布,这里看看异常数据和正常数据各自的数量:
c

ount_classes = pd.value_counts(data['Class'], sort = True).sort_index()

#这里会把Class这一列样本的类别作为index,value为每个类型样本的数量

count_classes.plot(kind = 'bar')

plt.title("Fraud class histogram")

plt.xlabel("Class")

plt.ylabel("Frequency")

数据标准化处理
 

from sklearn.preprocessing import StandardScaler


data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1,1))

#不仅计算训练数据的均值和方差,还会基于计算出来的均值和方差来转换训练数据,从而把数据转换成标准的正太分布

#那么reshape(1,-1)呢?也就是直接变成了一行了。

#那这个-1在这里要怎么理解呢?

#跟进numpy库官网的介绍,这里的-1被理解为unspecified value,意思是未指定为给定的。如果我只需要特定的行数,列数多少

#无所谓,我只需要指定行数,那么列数直接用-1代替就行了,计算机帮我们算赢有多少列,反之亦然。

#所以-1在这里应该可以理解为一个正整数通配符,它代替任何整数。

data = data.drop(['Time', 'Amount'], axis = 1)

#去掉标准化之前的数据

这里看到异常数据很少,但是正常数据巨多,这里为了在训练的时候以免因为全部采到正常数据因为正常和异常数据所带来的比例上的误差而对结果造成印象,我们采取下采样,使得异常数据和正常数据的个数一样。

X = data.iloc[:,data.columns != 'Class']

#获得特征变量的所有数据

y = data.iloc[:,data.columns == 'Class']

#获得因变量也就是分类数据那一列作为y

number_records_fraud = len(data[data.Class == 1])

fraud_indices = data[data.Class == 1].index

#得到所有异常样本索引以及数量方便之后对正常样本进行采样,因为需要:1:1

normal_indices = data[data.Class == 0].index


#在正常样本中随机采样出指定个数的样本,并取索引

random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False)

random_normal_indices = np.array(random_normal_indices)


#有了正常和异常样本后把他们的索引都拿到手

under_sample_indices = np.concatenate([fraud_indices, random_normal_indices])


#根据索引得到下采样所有的样本点

under_sample_data = data.iloc[under_sample_indices,:])


X_undersample = under_sample_data.iloc[:,under_sample_data.columns != 'Class']

y_undersample = under_sample_data.iloc[:,undersample_data.columns == 'Class']


#下采样 样本比例

print("正常样本所占整体比例:", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data))print("异常样本所占整体比例: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data))
print("下采样策略总体样本数量: ", len(under_sample_data))

数据集划分

from sklearn.model_selection import train_test_split


#对整个数据集进行划分 这里是73开,训练集70%测试集30%一般是28开,但是不会比73更高,注意要设置random_sstate保证随机取样的数据是一样的否则后面验证比较会有一个多的偶然因素


X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3,random_state = 0)


print("")
print("下采样训练集包含样本数量: ", len(X_train_undersample))
print("下采样测试集包含样本数量: ", len(X_test_undersample))
print("下采样样本总数: ", len(X_train_undersample)+len(X_test_undersample))

OK数据基本处理完毕了,开始建立逻辑回归模型

#Recall = TP/(TP+FN)召回率计算公式

TP(True Positive):将正类预测为正类(的数目),真实为0,预测也为0;

FN(False Negative):将正类预测为负类(的数目),真实为0,预测为1;

FP(False Positive):将负类预测为正类(的数目), 真实为1,预测为0;

TN(True Negative):将负类预测为负类(的数目),真实为1,预测也为1。

前边T\F是分类正确或者错误,后面的P\N是结果被分成是正例或负例

精确率(precision):TP/(TP+FP)
召回率(recall):TP/(TP+FN)在所有异常样本中我们正确取出的异常样本所占比例


from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import KFold, cross_val_score

from sklearn.metrics import confusion_matrix, recall_score,classification_report

from sklearn.model_selection import cross_val_predict


def printing_Kfold_scores(x_train_data, y_train_data):

      fold = KFold(5,shuffle = False)

      #将训练集进行五段切分进行交叉验证,这里不进行洗牌参数为False


      c_param_range = [0.01, 0.1, 1, 10, 100]

      #定义不同力度的正则化惩罚力度

      results_table = pd.DataFrame(index = range(len(c_param_range),2), columns  = ['C_parameter','Mean recall score'])

      results_table['C_parameter'] = c_param_range

      #展示结果用的表格

      j = 0

     #k-fold 表示K折的交叉验证,这里会得到两个索引集合:训练集 = indices[0], 验证集 = indices[1]

     for c_param in c_param_range:

           print('----------------------------------')

           print('正则化惩罚力度: ' , c_param)

           print('----------------------------------')

           print('')


           recall_accs = []

           #一步步分解来执行交叉验证

           for iteration, indices in enumerate(fold.split(x_train_data):

                 lr = LogisticRegression(C=c_param, penalty = 'l1',solver='liblinear')

                 #指定算法模型,并且给定参数

                 lr.fit(x_train_data.iloc[indices[0],:], y_train_data.iloc[indices[0],:].values.ravel())

                 #建立好模型后,预测模型结果,这里用的是验证集,索引为1

                 y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)

                #有了预测结果之后就可以来进行评估了,这里recall_score需要传入预测值和真实值。

                recall_acc = recall_score(y_train_data.iloc[indices[1],:].values, y_pred_undersample)

               #一会还要算平均,所以把每一步的结果都先保存起来。

               recall_accs.append(recall_acc)

               print('Iteration ', iteration, ': 召回率 =', recall_acc)


         #当执行完所有的交叉验证后,计算平均结果

         results_table.loc[j,'Mean recall score'] = np.mean(recall_accs)

         j += 1

         print('')

         print('平均召回率 ', np.mean(recall_accs))

         print('')


   best_c = results_table.loc[results_table['Mean recall score'].astype('float32').idmax()]['C_parameter']

   #打印最好的结果

    print('*********************************************************************************')
    print('效果最好的模型所选参数 = ', best_c)
    print('*********************************************************************************')
    
    return best_c

#交叉验证与不同参数结果


best_c = printing_Kfold_scores(X_train_undersample, y_train_undersample)

 

def plot_confusion_matrix(cm,classes, title = 'Confusion matrix',cmap = plt.cm.Blues):

    plt.title(title)

    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=0)
    plt.yticks(tick_marks, classes)
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.colorbar()
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')


import itertools

lr = LogisticRegression(C = best_c, penalty = 'l1', solver = 'liblinear')

lr.fit(X_train_undersample,y_train_undersample.values.ravel())

y_pred_undersample = lr.predict(X_test_undersample.values)


#计算所需值

cnf_matrix = confusion_matrix(y_test_undersample, y_pred_undersample)

np.set_printoptions(precision = 2)


print("召回率:", cnf_matrix[1,1]/(cnf_matrix[1,0] + cnf_matrix[1,1]))


#绘制

class_names = [0,1]

plt.figure()

plot_confusion_matrix(cnf_matrix,classes = class_names,title = 'Confusion matrix')


plt.show()

#下采样方案在原始数据中的结果

lr = LogisticRegression(C = best_c, penalty = 'l1', solver = 'liblinear')

lr.fit(X_train_undersample, y_train_undersample.values.ravel())

y_pred = lr.predict(X_test.values)


#计算所需值

cnf_matrix = confusion_matrix(y_test,y_pred)

np.set_printoptions(precison = 2)


print("召回率:", cnf_matrix[1,1]/ (cnf_matrix[1,0] + cnf_matrix[1,1]))


#绘制

class_names = [0,1]

plt.figure()

plot_confusion_matrix(cnf_matrix,classes = class_names, title = 'Confusion matrix')

plt.show()

#原始数据值借建模结果

best_c = printing_Kfold_scores(X_train,y_train)

lr = LogisticRegression(C = best_c, penalty = 'l1',solver='liblinear')
lr.fit(X_train,y_train.values.ravel())
y_pred_undersample = lr.predict(X_test.values)

# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred_undersample)
np.set_printoptions(precision=2)

print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
                      , classes=class_names
                      , title='Confusion matrix')
plt.show()

#阈值对结果的影响

#用之前最好的参数来进行建模

lr = LogisticRegression(C = 0.01, penalty = 'l1', solver = 'liblinear')


#训练模型,还是用下采样的数据集

lr.fit(X_train_undersample, y_trian_undersample.values.ravel())


#得到预测结果的概率值

y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values)


#指定不同的阈值

thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

plt.figure(figsize = (10,10))

j = 1

# 用混淆矩阵来进行展示
for i in thresholds:
    y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > i
    
    plt.subplot(3,3,j)
    j += 1
    
    cnf_matrix = confusion_matrix(y_test_undersample,y_test_predictions_high_recall)
    np.set_printoptions(precision=2)

    print("给定阈值为:",i,"时测试集召回率: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

    class_names = [0,1]
    plot_confusion_matrix(cnf_matrix
                          , classes=class_names
                          , title='Threshold >= %s'%i)

 

SMOTE过采样方案

这里下采样的结果召回率太糟糕了,所以使用过采样的方案

import pandas as pd

from imblearn.over_sampling import SMOTE

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split

credit_cards = pd.read_csv('creditcard.csv')


columns = credit_cards.columns

#在特征中去除掉标签

features_columns = columns.delete(len(columns)-1)


features = credit_cards[features_columns]

labels = credit_cards['Class']

features_train, features_test, label_train, label_test = train_test_split(features,lables,test_size = 0.3,random_state =0)

#基于SMOTE算法进行样本生成,这样正例和负例样本数量就是一致的了

oversampler  =SMOTE(random_state = 0)

os_features, os_labels = oversampler.fit_sample(features_train, labels_train)

#训练集样本数量

len(os_labels[os_labels = 1])

os_features = pd.DataFrame(os_features)

os_labels = pd.DataFrame(os_labels)

best_c = printing_Kfold_scores(os_features, os_labels)


lr = LogisticRegression(C = best_c, penalty = 'l1', solver = 'liblinear')

lr.fit(os_features, os_labels.values.ravel())

y_pred = lr.predict(features_test.values)


#计算混淆矩阵

cnf_matrix = confusion_matrix(labels_test, y_pred)

np.set_printoptions(precision = 2)


print("召回率:", cnf_matrix[1,1] / (cnf_matrix[1,0] + cnf_matrix[1,1]))


#绘制

class_names = [0,1]

plt.figure()

plot_confusion_matrix(cnf_matrix,classes = class_names, title = 'Confusion matrix')

plt.show()

项目总结

(1)在此项目中,我们首选对数据进行了观察,发现了其中样本不均衡的问题,其实我们做任务工作之前都一定要先进行数据检查,看看数据有什么问题,针对这些问题来选择解决方案。

(2)这里我们提出了两种方法,下采样和过采样,两条路线来进行对比实验,任何实际问题来了之后,我们都不会一条路走到黑的,没有对比就没有伤害,通常都会得到一个基础模型,然后对各种方法进行对比,找到最合适的,所以在任务开始之前,一定得多动脑筋多一手准备,得到的结果才有可选择的余地。

(3)在建模之前,需要对数据进行各种预处理的操作,比如数据标准化,缺失值填充等,这些都是必要操作,由于数据本身已经给定了特征,此处我们还没有提到特征工程这个概念,后续实战中我们会逐步引入,其实数据预处理的工作是整个任务中最为最重也是最苦的一个阶段,数据处理的好不好对结果的影响是最大的。

(4)先选好评估方法,再进行建模。建模的目的就是为了得到结果,但是我们不可能一次就得到最好的结果,肯定要尝试很多次,所以一定得有一个合适的评估方法,可以用这些通用的,比如Recall,准确率等,也可以根据实际问题自己指定评估指标。

(5)选择合适的算法,这里我们使用的是逻辑回归,也详细分析了其中的细节,这是因为我们刚刚讲解完逻辑回归的原理就拿它来练手了,之后我们还会讲解其他算法,并不一定非要用逻辑回归来完成这个任务,其他算法可能效果会更好。但是有一点我希望大家能够理解就是在机器学习中并不是越复杂的算法越实用,恰恰相反,越简单的算法反而应用的越广泛。逻辑回归就是其中一个典型的代表了,简单实用,所以任何分类问题都可以把逻辑回归当做一个待比较的基础模型了。

(6)模型的调参也是很重要的,之前我们通过实验也发现了不同的参数可能会对结果产生较大的影响,这一步也是必须的,后续实战内容我们还会来强调调参的细节,这里就简单概述一下了。对于参数我建立大家在使用工具包的时候先看看其API文档,知道每一个参数的意义,再来实验选择合适的参数值。

(7)得到的结果一定要和实际任务结合在一起,有时候虽然得到的结果指标还不错,但是实际应用却成了问题,所以测试环节也是必不可少的。到此,这个项目就给大家介绍到这里了,在实践中学习才能成长的更快,建议大家一定使用提供的Notebook代码文件来自己完成一遍上述操作。

  • 7
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值