卷积神经网络-感受野的定义

61 篇文章 6 订阅
39 篇文章 2 订阅

1. 感受野的概念

在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小。再通俗点的解释是,特征图上的一个点对应输入图上的区域,如图1所示。

图1:用图形理解感受野概念

 

2. 感受野的例子

(1)两层3*3的卷积核卷积操作之后的感受野是5*5,其中卷积核(filter)的步长(stride)为1、padding为0,如图2所示:

图2:两层3*3卷积核操作之后的感受野是5*5

(2)三层3*3卷积核操作之后的感受野是7*7,其中卷积核的步长为1,padding为0,如图3所示:

                            

                                                 图3:三层3*3卷积核操作之后的感受野是7*7

3. 感受野的计算

感受野计算时有下面几个知识点需要知道:

  • . 最后一层(卷积层或池化层)输出特征图感受野的大小等于卷积核的大小。
  • . 第i层卷积层的感受野大小和第i层的卷积核大小和步长有关系,同时也与第(i+1)层感受野大小有关。
  • . 计算感受野的大小时忽略了图像边缘的影响,即不考虑padding的大小。

关于感受野大小的计算方式是采用从最后一层往下计算的方法,即先计算最深层在前一层上的感受野,然后逐层传递到第一层,使用的公式可以表示如下:

其中,是第i层卷积层的感受野,是(i+1)层上的感受野,stride是卷积的步长,Ksize是本层卷积核的大小。

 

4. 计算VGG16网络每层的感受野

(1)引例。

VGG16网络有点复杂,我们先来计算一个简单的例子,先学会计算感受野,在来分析复杂的网络。

图4:简单的网络结构

我们从最后一层的池化层开始计算感受野:

pool3:RF=2(最后一层池化层输出特征图的感受野大小等于卷积核的大小)

conv4:RF=(2-1)*1+3=4。

conv3:RF=(4-1)*1+3=6。

pool2:RF=(6-1)*2+2=12。

conv2:RF=(12-1)*1+3=14。

pool1:RF=(14-1)*2+2=28。

conv1:RF=(28-1)*1+3=30。

因此,pool3输出的特征图在输入图片上的感受野为30*30。

(2)VGG16网络每层感受野计算

图5:VGG16网络结构

在VGG16网络中,我们从全连接层开始倒推,直到输入层,过程如下:

pool5:RF=2。(最后一层池化层输出特征图感受野的大小等于卷积核的大小)

conv5_3:RF=(2-1)* 2+2=4。

conv5_2:RF=(4-1)*1+3=6。

conv5_1:RF=(6-1)*1+3=8。

pool4:RF=(8-1)*2+2=16。

... ... ... ... ... ... ...

类推...

因此我们可以得出:pool5输出的特征图在输入图片上的感受野为212*212;conv5_3输出的特征图在输入图片上的感受野为196*196,其它层依次类推。

图6:VGG16网络感受野计算结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值