风格迁移VGG-Loss之Gram matrix

风格迁移通过VGG网络利用Gram矩阵衡量图像特征间的相关性。计算Gram矩阵是将特征图转换成矩阵并与其转置做内积,表示特征之间的相关度。在风格迁移中,通过最小化基准图像与风格图像Gram矩阵的差异来调整图像,使其风格接近目标。浅层特征捕捉细节,深层特征捕获抽象信息,组合形成图像风格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

风格迁移VGG-Loss之Gram matrix

source:
https://www.cnblogs.com/yifanrensheng/p/12862174.html
https://medium.com/@oleksandrsavsunenko/content-and-style-loss-using-vgg-network-e810a7afe5fc

定义

n维欧式空间中任意k个向量之间两两内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix),很明显,这是一个对称矩阵。
Gram matrix

计算和特征表示

如果把[channel, h, w]的feature map转换为[channel, h * w]的矩阵,然后与自己的转置矩阵做内积,那么就得到了Gram matrix;由于内积表示两个向量的相关度,所以Gram matrix可以表示自己的特征矩阵中,channel i _i i 和 channel j _j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值