1. NLP 发展史简述
-
第一个浪潮:理性主义:早期NLP研究主要基于规则和逻辑,认为语言可以通过形式化的语法和语义规则来描述和处理。研究者试图构建人工语言和推理系统,通过预先定义的规则来进行语言理解和生成。这种方法在特定领域和简单任务上取得了一定成果,但对于复杂自然语言的处理存在局限性,难以应对语言的多样性和模糊性。
-
第二波浪潮:经验主义:随着计算机技术和数据资源的不断发展,NLP研究逐渐转向基于数据驱动的方法。大量真实文本数据的收集和分析成为可能,研究者开始利用统计学和机器学习算法从数据中学习语言规律。例如,通过词频统计、概率模型等方法来进行词性标注、命名实体识别等任务。这种方法能够更好地适应自然语言的复杂性和变化性,但需要大量的标注数据和计算资源。
-
第三波浪潮:深度学习:近年来,深度学习技术在NLP领域取得了巨大成功。深度学习模型如神经网络、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)、卷积神经网络(CNN)等被广泛应用于各种自然语言处理任务。这些模型具有强大的自动特征学习能力&#x