LangChain创建对话机器人

可以利用消息历史记录类来封装我们的模型,从而赋予其保持状态的能力。这将使得模型的输入和输出能够被追踪,并存储在特定的数据存储中。在后续的交互过程中,这些历史消息会被重新加载,并作为输入的一部分参与到处理流程中。让我们来看看具体的实现方法吧!

首先,我们需要确保已安装langchain-community库,因为我们将会用到该库中的相关功能来管理消息的历史记录。

安装

pip install langchain_community

消息历史

我们可以导入相关的类来设置一个包装模型,并且添加一个处理消息历史记录的功能。这里的核心在于我们所使用的函数get_session_history。这个函数应当接收一个session_id参数,并据此返回对应的消息历史记录对象。session_id的作用是区分不同的对话会话,因此当初始化一个新的处理链时,需要将其作为配置的一部分传入。

from langchain_core.chat_history import (

BaseChatMessageHistory,

InMemoryChatMessageHistory,

)

from langchain_core.runnables.history import RunnableWithMessageHistory


store = {}



def get_session_history(session_id: str) -> BaseChatMessageHistory:

if session_id not in store:

store[session_id] = InMemoryChatMessageHistory()

return store[session_id]



with_message_history = RunnableWithMessageHistory(chain, get_session_history)

现在我们需要创建一个配置对象,每次都将它传递给Runnable。这个配置对象包含的信息虽然不属于直接的输入数据,但是对处理过程来说仍然是必要的。在这个例子中,我们需要包含一个session_id。具体实现如下所示:

from langchain_core.chat_history import (

BaseChatMessageHistory,

InMemoryChatMessageHistory,

)

from langchain_core.runnables.history import RunnableWithMessageHistory


store = {}



def get_session_history(session_id: str) -> BaseChatMessageHistory:

if session_id not in store:

store[session_id] = InMemoryChatMessageHistory()

return store[session_id]



with_message_history = RunnableWithMessageHistory(chain, get_session_history)

管理对话

在构建聊天机器人时,一个重要的概念是对话历史记录的管理。如果不进行适当的管理,消息列表可能会无限制地增长,最终导致超出语言模型所能处理的上下文长度限制。因此,添加一个控制传入消息数量或大小的机制是非常关键的。

LangChain 提供了一些内置的工具来帮助管理消息列表。可以运用trim_messages助手来限制发送给模型的消息数量。这个修剪工具允许我们设定要保留的最大标记数,以及其他选项,比如是否始终保留系统消息,以及是否允许分割消息以适应上下文长度限制。

from langchain_core.messages import SystemMessage, trim_messages


trimmer = trim_messages(

max_tokens=15,

strategy="last",

token_counter=model,

include_system=True,

allow_partial=False,

start_on="human",

)


messages = [

SystemMessage(content="you're a good assistant"),

HumanMessage(content="hi! I'm bob"),

AIMessage(content="hi!"),

HumanMessage(content="I like vanilla ice cream"),

AIMessage(content="nice"),

HumanMessage(content="whats 2 + 2"),

AIMessage(content="4"),

HumanMessage(content="thanks"),

AIMessage(content="no problem!"),

HumanMessage(content="having fun?"),

AIMessage(content="yes!"),

]


trimmer.invoke(messages)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值