Resnet 残差神经网络代码解读

Resnet 残差神经网络代码解读

代码根据torchvision.models中的源码

Resnet结构

resnet由building block和bottleneck组成,building block的结构如下:

在这里插入图片描述

比传统的卷积结构多了一个short-cut支路,用于传递底层的信息使得网络能够很深

bottleneck的结构如下:

在这里插入图片描述

这个结构主要是能够减少参数的数目,第一个1×1卷积把256维的channel降到64维,然后最后通过1×1卷积恢复256的通道数,整体上参数的数目1×1×256×64 + 3×3×64×64 + 1×1×64×256 = 69632,而用类似之前的block的话就是两个3×3×256的卷积,参数数目为3×3×256×256×2 = 1179648,差了16.94倍

在这里插入图片描述

Resnet总共有五组卷积,其中输入的size为224×224,第五组卷积输出为7×7.

代码解读

代码中,主要的结构有两个:BasicBlock和Bottlenneck,即上述所说的

Resnet18

先拿Resnet18举例

函数定义的部分

在这里插入图片描述

model为一个叫做Resnet的类,后面的[2, 2, 2, 2]可以看到正好是卷积组的个数。

再看ResNet类:

class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
        super(ResNet, self).__init__()
        self.inplanes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x

根据forward函数来看数据的流动,主要的部分就是中间的layer1-layer4

在这里插入图片描述

如果planes*block.expansion不等于inplanes或步长不为1,则进行下采样将通道数改为 planes*block.expansion,步长改为新的步长。叫下采样的原因是要调整input和残差的步长都一直(大于1),但其实还是有改变通道数。

再看到BasicBlock类:

在这里插入图片描述

可以看到,downsample就是为残差而准备的identity = self.downsample(x),其中只有第一层的conv1的步长是根据输入来的,举个例子,如果是2,那么输入x同时也经过同样的下采样,即使得残差和output一致。

Resnet18和Resnet34都是只用到了BasicBlock,就类似普通的CNN,但是更深的残差网络使用的是Bottleneck模块,如上述说到的主要目的是减小参数的数量

Resnet 50

定义部分:

在这里插入图片描述

Bottleneck部分

在这里插入图片描述

总结

Resnet是一个很有名的网络,它为搭建深层次的神经网络提供了一种可行方法。之前一直觉得这个网络好复杂,但是仔细去读源码的时候,发现很容易理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值