pytorch实现遥感建筑物提取

如何自动地从高分辨率遥感影像中提取建筑物等人工目标是高分辨率遥感影像处理与理解领域的一个热点与难点问题。本篇文章我们将学习如何使用pytorch实现遥感建筑物的智能提取。

智能提取的流程

基于深度学习的遥感建筑物智能提取,首先需要制作数据集,然后构建深度学习神经网络,接着让深度学习神经网络从制作的数据集中学习建筑物的特征,最终实现建筑物的智能提取。

数据集选择

本文选取的是WHU-Building-DataSets数据集[1]包含了从新西兰基督城的航空图像中提取的超过220,000个独立建筑,图像被分割成了8189个512×512像素的片,其中包含了训练集(130,500个建筑),验证集(14,500个建筑)和测试集(42,000个建筑)。

网络构建

这里我们选用最基础的UNet网络进行搭建。

import torch
import torch.nn as nn

class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(DoubleConv, self).__init__()
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)

class UNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UNet, self).__init__()
        self.down1 = DoubleConv(in_channels, 32)
        self.pool1 = nn.MaxPool2d(2)
        self.down2 = DoubleConv(32, 64)
        self.pool2 = nn.MaxPool2d(2)
        self.down3 = DoubleConv(64, 128)
        self.pool3 = nn.MaxPool2d(2)
        self.down4 = DoubleConv(128, 256)
        self.pool4 = nn.MaxPool2d(2)

        self.middle = DoubleConv(256, 512)

        self.up1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
        self.upconv1 = DoubleConv(512, 256)
        self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
        self.upconv2 = DoubleConv(256, 128)
        self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
        self.upconv3 = DoubleConv(128, 64)
        self.up4 = nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2)
        self.upconv4 = DoubleConv(64, 32)

        self.out_conv = nn.Conv2d(32, out_channels, kernel_size=1)

    def forward(self, x):

        down1 = self.down1(x)
        pool1 = self.pool1(down1)
        down2 = self.down2(pool1)
        pool2 = self.pool2(down2)
        down3 = self.down3(pool2)
        pool3 = self.pool3(down3)
        down4 = self.down4(pool3)
        pool4 = self.pool4(down4)

        middle = self.middle(pool4)

        up1 = self.up1(middle)
        concat1 = torch.cat([down4, up1], dim=1)
        upconv1 = self.upconv1(concat1)

        up2 = self.up2(upconv1)
        concat2 = torch.cat([down3, up2], dim=1)
        upconv2 = self.upconv2(concat2)

        up3 = self.up3(upconv2)
        concat3 = torch.cat([down2, up3], dim=1)
        upconv3 = self.upconv3(concat3)

        up4 = self.up4(upconv3)
        concat4 = torch.cat([down1, up4], dim=1)
        upconv4 = self.upconv4(concat4)

        out = self.out_conv(upconv4)
        return out

网络训练

alt

训练结果

训练完成后,loss与accuracy变化曲线如下所示。 alt alt

测试精度

我们对IOU、F1、OA、Precision、Recall等做了测试,测试精度如下。 alt

测试结果

alt

总结

本期的分享就到这里,感兴趣的点点关注。

参考资料

[1]

WHU-Building-DataSets: https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html

本文由 mdnice 多平台发布

  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
whu-river数据集是一个用于河流水质监测和预测的数据集。该数据集由华中科技大学收集和创建,旨在帮助研究人员和决策者更好地理解和管理河流的水质问题。 该数据集包含了来自中国不同河流的水质监测数据,包括河水的化学指标、生物学指标、水文学指标和气象指标等。这些指标可以帮助评估河流的污染程度和水质状况,并提供对河流水质变化的预测。数据集中的每个样本都包含了特定时间点对应的水质指标数值。 使用whu-river数据集,研究人员可以进行水质分析、趋势预测和模型构建等工作。例如,可以通过分析数据集中的化学指标,了解河流中各种物质的含量和分布情况,进而评估河流的水质状况。同时,还可以利用数据集中的生物学指标,评估河流的生态系统健康度。 此外,whu-river数据集还可以用于建立水质预测模型。通过对历史数据的分析和挖掘,可以发现不同指标之间的关联性和规律,从而构建出准确预测水质的模型。这样的模型可以对未来水质状况进行预测,为决策者提供科学依据,制定更为有效的水资源管理和保护措施。 总之,whu-river数据集是一个宝贵的资源,对于研究河流水质和水资源管理具有重要意义。它提供了丰富的水质监测数据,可用于水质分析、趋势预测和模型构建等工作,为保护水环境和维护水质做出贡献。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DataAssassin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值