评价对象
- IoU、Precision、Recall是针对所有图片内的某一类来说的;
- mIoU、mPA、Accuracy是针对所有类别来计算的;
分类器预测结果
实际中分类器的预测结果可以分为四种,TP,TN ,FP,FN:
- TP true positive 实际为正样本预测为正样本
- TN true negitive 实际为负样本预测为负样本
- FP false positive 实际为负样本预测为正样本
- FN false negative 实际为正样本预测为负样本
IoU、Precision、Recall
- IoU 交并比: TP/(TP+FP+FN)
- Recall 查全率: TP/(TP+FN)
- Precesion 精确率(类别像素准确率CPA:每个类被正确分类像素数的比例): TP/(TP+FP)
Miou、mPA、Accuracy
- Accuracy 像素准确率(PA: 预测类别正确的像素数占总像素数的比例):
Accuracy=PA = (TP + TN) / (TP + TN + FP + FN) - mPA (CPA累加求平均): mPA = sum(Pi) / 类别数