深度学习网络评价指标——IoU、Precision、Recall,mIoU、mPA、Accuracy和f-score的定义,区别和联系

评价对象

  • IoU、Precision、Recall是针对所有图片内的某一类来说的;
  • mIoU、mPA、Accuracy是针对所有类别来计算的;

分类器预测结果

实际中分类器的预测结果可以分为四种,TP,TN ,FP,FN:
在这里插入图片描述

  • TP true positive 实际为正样本预测为正样本
  • TN true negitive 实际为负样本预测为负样本
  • FP false positive 实际为负样本预测为正样本
  • FN false negative 实际为正样本预测为负样本

IoU、Precision、Recall

  • IoU 交并比: TP/(TP+FP+FN)
  • Recall 查全率: TP/(TP+FN)
  • Precesion 精确率(类别像素准确率CPA:每个类被正确分类像素数的比例): TP/(TP+FP)

Miou、mPA、Accuracy

  • Accuracy 像素准确率(PA: 预测类别正确的像素数占总像素数的比例):
    Accuracy=PA = (TP + TN) / (TP + TN + FP + FN)
  • mPA (CPA累加求平均): mPA = sum(Pi) / 类别数
### 图像分割性能评估指标解释 #### 召回率 (Recall) 召回率用于衡量模型能够正确识别出多少实际存在的正样本。对于图像分割而言,这表示在所有真实目标像素中,被预测为目标类别的比例[^1]。 计算公式如下: \[ \text{Recall} = \frac{\text{TP}}{\text{TP + FN}} \] 其中 TP 表示真正例(True Positive),FN 表示假负例(False Negative)。 #### 平均精度 (mPrecision) 平均精度不仅考虑了检测到的目标数量还关注这些检测结果的质量。具体来说,在图像分割场景下,这是指所有预测为特定类别像素中有多少确实是该类别的实例。 其定义可以写作: \[ \text{Precision} = \frac{\text{TP}}{\text{TP + FP}} \] 这里 FP 是指错误地标记成前景的背景像素数(False Positive)。 #### 像素准确度 (Pixel Accuracy, PA) 像素级准确度是最简单的评价标准之一,它简单统计分类正确的像素占总像素的比例。然而这个方法存在局限性因为它忽略了不同区域的重要性差异以及边界情况的影响。 \[ \text{PA} = \frac{\sum_{i=1}^{N}\mathbb{I}(y_i=\hat y_i)}{N} \] 这里的 \( N \) 代表总的像素数目;\( y_i,\hat y_i \) 则分别对应第 i 个位置的真实标签及其对应的预测值。 #### 修改后的交并比 (Mean Intersection over Union, mIoU) 为了更全面地反映分割效果,通常采用 IoU 或者称为 Jaccard Index 来测量两个集合之间的重叠程度。而 mIoU 就是对各个类别单独计算 IoU 的平均值得来。这种方式有效地解决了类别不平衡带来的问题,并且更加注重于形状匹配而非仅仅是面积覆盖。 \[ \text{IoU}_k = \frac{|Y_k\cap P_k|}{|Y_k\cup P_k|}, k=0,...,K-1 \] 最后求得整体表现即为各类别 IoU 的算术平均值作为最终得分。 ```python def mean_IoU(y_true, y_pred): # 计算每个类别的IoU再取平均 pass ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Winkyyyyyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值