在深度学习和机器学习中,评价模型性能是至关重要的一环。本文将详细讲解一些常见的评价指标,包括精确率(Precision)、召回率(Recall)、F1-score、平均交并比(mIOU)和平均Dice系数(mDice)。这些指标广泛应用于分类和语义分割任务中。
1. 精确率(Precision)
精确率是指在所有被模型预测为正类的样本中,真正为正类的比例。其计算公式为:
其中,TP(True Positive)是真正类,FP(False Positive)是假正类。
代码示例:
import numpy as np
from sklearn.metrics import precision_score
# 模拟一些预测标签和真实标签
y_true = np.array([0, 1, 1, 1, 0, 1, 0, 0, 1, 0]) # 真实标签
y_pred = np.array([0, 1, 0, 1, 0, 1, 0, 1, 1, 0]) # 预测标签
# 计算Precision
def calculate_precision(y_true, y_pred):
precision = precision_score(y_true, y_pred)
return precision
precision = calculate_precision(y_true, y_pred)
print(f"Precision: {
precision:.2f}")
2. 召回率(Recall)
召回率是指在所有实际为正类的样本中,被模型正确预测为正类的比例。其计算公式为:
其中,FN(False Negative)是假负类。
代码示例:
import numpy as np
from sklearn.metrics import recall_score
y_true = np.array([