2021-03-19

笔者写本篇本篇博客是为了帮助人工智能领域的初学者建立基本的数学基础——多元函数微分学。

前言

我们知道对于只有一个自变量的一元函数 y = f ( x ) y = f(x) y=f(x),在满足一定条件下是可以进行微分与求导的,如果对于一元函数微分和导数的概念不是很清楚,可以参考下面这片博客。同样对于多元函数,同样,具有可微与可导的性质,但是又与一元函数不完全类似。那现在让我们一起敲开多元函数的大门,去探寻里面的奥秘吧!


一、可微性

1. 可微性与全微分

定义:设函数 z = f ( x , y ) z = f(x,y) z=f(x,y) P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某邻域 U ( P 0 ) U(P_0) U(P0)上有定义,对于 U ( P 0 ) U(P_0) U(P0)中的点 P ( x , y ) = ( x 0 + Δ x , y 0 + Δ y ) P(x,y) = (x_0+\Delta x,y_0+\Delta y) P(x,y)=(x0+Δx,y0+Δy),若函数 f f f在点 P 0 P_0 P0处的全增量 Δ z \Delta z Δz可以表示为
Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( p ) , \Delta z = f(x_0 + \Delta x,y_0+\Delta y) -f(x_0,y_0) = A\Delta x + B\Delta y + o(p), Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(p),
其中 A , B A,B A,B是仅与 P 0 P_0 P0有关的常数,则成函数 f f f P 0 P_0 P0处可微。

2. 关于可微性的几点理解

可微是一个很强的概念,对于二元函数来说,函数在某一点可微可以按照定义来理解,也可以理解为在该点可以用一个切平面近似。对于可微有几点必要条件:

  • 可微必定连续

  • 可微必可偏导,事实上所有方向导数都存在

  • 切记,以上两条仅仅是必要条件,不可以由此推出可微

  • 具体反例可以参考这篇博客 为什么偏导数连续,函数就可微?

可微的充分条件:
偏导数存在且连续。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值