立即学习:https://edu.csdn.net/course/play/28807/427187?utm_source=blogtoedu
1、简介
- 模型优化器
- 离线工具
-
优化后准确度可能会下降,但是是可控的,性能应该会更强
2、功能总结
-
1、对深度学习框架下的模型进行转换( to IR format)
-
2、将模型网络映射到支持的库与内核上
-
3、添加预处理操作
-
深度学习训练不会直接使用图像像素,而是先对图像进行校准与缩放
-
除此以外,还有更改输入图像的shape,以及将输入通道顺序进行反转(BGR<->RGB)等。
-
-
4、优化网络
-
功能不变,但是运算数量减少了,通过映射到更高级的库单元,可以让网络保持数学等价
-
-
5、更改数据格式
-
将模型数据与权重的格式有FP32更改为FP16,从浮点到整数的转换是通过模型优化器外部校准流程来完成的(注意设备是否支持)
-
-
6、裁剪网络
-
剪切网络的相应部分,可以剪切掉指定的网络层
-