OpenPose基于Windows10的编译(包括python运行)

OpenPose自编译(基于windows10)

第一次编译openpose,里面坑很多,因此记录一下。
先把我遇到的问题写在前面,想要从头开始配置的可以先跳过这部分,直接看下面第一步

  • CMake时会去检测windows的依赖项,最好提前下好不然会很慢
    在这里插入图片描述
    这几个分别对应D:\github\openpose\3rdparty\windows目录下的几个bat文件,可以用记事本打开,复制链接用迅雷下载,或者直接加速器打开去直接运行bat文件
    在这里插入图片描述
    CMake的时候选上这个model
    在这里插入图片描述
    - 注意一下,VS菜单栏的解决方案配置选择Release,不要选Debug,不然不会生成Release文件
    否则Python运行会报错
    ImportError: cannot import name ‘pyopenpose’ from 'openpose’

    在这里插入图片描述
    - Failed to parse NetParameter file: models\pose/body_25/pose_iter_584000.caff
    编译遇到这个错误大概率是model没有下载全,去models目录下运行getModels.bat
    - Check failed: error == cudaSuccess (2 vs. 0) out of memory
    在这里插入图片描述
    显存超了,把batch_size调低(网上的解决方案,我没有尝试,大部分教程都是在Ubuntu下配置,与Windows的conf文件内容不太一样,虽然我的显卡是1060的感觉不会那么容易超,所以感觉是不是其他问题,比如GPU用了集显什么的,如果有大佬懂的话希望能告诉我一下,呜呜呜)

第一步 软件安装

了解一下需要安装的软件:
  • CMake 直接装最新版就行

    安装第一个版本,安装默认就行,自定义路径时注意的是安装路径最好不要有中文
    安装完成后,打开cmd,输入cmake,如果提示cmake的一些信息表示安装成功

  • VS 2019
    这里我用的是2019版本,因为安装比较简单,安装VS的过程不再详述,直接贴个官网链接 Visual Studio 2019 装社区版就可以了,注册一个Micosoft账号好像就可以使用,最好别去搜网上专业破解版,会带来不必要的麻烦。
    在这里插入图片描述

  • Python运行环境
    如果使用的是Python,可以装个Pycharm,当然其他的IDE能写python的,能项目文件管理的都可以使用,这里只是最后一步来执行Python使用(因为源项目是c++写的,最后是用pybind生成的python)

  • 使用CPU或GPU
    如果选择使用CPU,这一步直接跳过(CPU会比较慢);如果选择使用GPU,需要安装CUDA和cuDnn :
    如果有加速器建议使用,因为真的进官网和下载会超级慢,网盘贴在下面:
    cudnn
    链接:https://pan.baidu.com/s/1joPpALWaZehx3kcs-PzdKg
    提取码:wmjy
    CUDA 比较大接近3GB,建议先下
    链接:https://pan.baidu.com/s/1GxIPdMGg5yqOx9rkxN1EAw
    提取码:hd3l
    CUDA
    首先去官网下载CUDA,打开exe,直接按照默认步骤安装(我安装过程不知道为什么电脑重启了,不过重启后再安装就成功了)
    安装完了之后,打开Samples文件夹,测试是否安装成功(如果你是默认的安装,Samples在C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1这个目录下)
    C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1\1_Utilities\deviceQuery进入到这个目录
    在这里插入图片描述
    打开sln后缀的工程项目,能成功编译运行就OK
    cudnn
    注意下载的时候会让你登陆NVIDIA账号,没有的话注册一个
    下载完打开是这样的目录
    直接把lib include bin三个文件拖到对应CUDA的安装目录下(默认C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1),这样就cudnn就算添加完成了
    在这里插入图片描述
    Openpose源码
    两个途径下载,我这里给出了我已经配置好的,下载完所有模型的项目链接(下载这个可以不用做第二步,直接去第三步):
    链接:https://pan.baidu.com/s/16pRfnZXhxGUR24EDcywCtQ
    提取码:j87q
    下载完就用CMake配置,查看有没有错误,具体步骤看第三步
    第二种方式去github.com搜索openpose,第一个就是
    在这里插入图片描述
    选择Download ZIP都下载下来就行
    在这里插入图片描述
    到此为止要装的文件差不多了

第二步 配置依赖

  • 去D:\github\openpose\models下运行getModels.bat,或者用记事本打开,复制链接,用迅雷下载

  • 去3rdparty/windows下安装下面的几个bat文件
    在这里插入图片描述

  • 下载pybind11,放到3rdparty下(当然你也可以不下,CMake时会自动下载,不过没有加速器下载会很慢)
    在这里插入图片描述

第三步 CMake以及编译源码

  1. 打开CMake 填入对应的项目目录,第一个填项目的根目录,第二个需要新建一个build文件,填入对应目录
    在这里插入图片描述
  2. 点击Configure,第一次会弹出一个窗口询问,选择自己的版本就好,一般都是64位的选x64
    在这里插入图片描述
  3. 选择对应的选项,如果需要python运行就勾选BUILD_PYTHON
    在这里插入图片描述
    把几个模型都勾选上
    在这里插入图片描述
    如果是使用GPU的就CUDA不变,如果是CPU就改成CPU_ONLY
    在这里插入图片描述
    然后继续Configure直到没有红色的选项
  4. 点击Generate生成,然后open project,点击生成
    在这里插入图片描述

接着再点击pyopenpose生成解决方案
在这里插入图片描述
生成成功后,打开第一个tutorial,01_body_from_image_default,右键设置为启动项,然后运行
在这里插入图片描述
最后运行成功的结果
在这里插入图片描述
当然你可以设置其他的为启动项来尝试其他的示例,顺带一提openpose.cpp会直接调用你的摄像头来实时检测,很快乐

Python运行

打开pycharm,直接打开项目,位置是你的openpose的文件目录,然后打开层级目录,进入到build/examples/tutorial_api_python
这里不要进错了,不是openpose/examples/tutorial_api_python
在这里插入图片描述
然后直接运行就好了,与VS同一个效果
在这里插入图片描述
- 注意一下,VS菜单栏的解决方案配置选择Release,不要选Debug,不然不会生成Release文件
否则Python运行会报错
ImportError: cannot import name ‘pyopenpose’ from 'openpose’

在这里插入图片描述

其代码较为简单,模型(较小:7.8M)已经训练好在graph_opt.pb文件中,其中全部实现代码在openpose.py文件中,下面是实现代码及测试效果: # To use Inference Engine backend, specify location of plugins: # export LD_LIBRARY_PATH=/opt/intel/deeplearning_deploymenttoolkit/deployment_tools/external/mklml_lnx/lib:$LD_LIBRARY_PATH import cv2 as cv import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') parser.add_argument('--thr', default=0.2, type=float, help='Threshold value for pose parts heat map') parser.add_argument('--width', default=368, type=int, help='Resize input to specific width.') parser.add_argument('--height', default=368, type=int, help='Resize input to specific height.') args = parser.parse_args() BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4, "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9, "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14, "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 } POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"], ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"], ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"], ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ] inWidth = args.width inHeight = args.height net = cv.dnn.readNetFromTensorflow("graph_opt.pb") cap = cv.VideoCapture(args.input if args.input else 0) while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break frameWidth = frame.shape[1] frameHeight = frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = o
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值