OPENCV对视频进行形态学处理

# -*- coding:utf-8 -*-
"""
作者:794919561
日期:2023/5/12 
"""
import cv2
import numpy as np

# 加载视频
# cap = cv2.VideoCapture("./videos/MyVideo.mp4")
# while True:
#     ret,frame = cap.read()
#     if(ret == True):
#         cv2.imshow("video",frame)
#     key = cv2.waitKey(25)
#     if(key == 27):
#         break
# cap.release()
阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
OpenCV是一个开源的计算机视觉库,其中包含了许多图像处理和计算机视觉算法。使用OpenCV可以快速从视频中提取出前景。 要从视频中提取出前景,可以使用OpenCV中的背景减除算法。这种算法基于以下假设:场景中的静态背景与前景相比变化较小,因此,通过将每一帧图像与背景模型进行比较,我们可以根据像素差异来确定前景目标。 首先,我们需要采集样本图像作为背景模型。可以通过读取并选择视频中几帧图像来获得最常见的像素值,以此作为背景模型。然后,可以使用OpenCV中的createBackgroundSubtractorMOG2函数创建背景减除器,并将背景模型作为参数传递进去。 接下来,可以使用OpenCV中的BackgroundSubtractorMOG2的apply函数将当前视频帧与背景模型进行比较,从而获得前景目标。这个函数将返回一个二进制图像,其中前景目标像素为白色(255),背景像素为黑色(0)。 通过在二进制图像上应用形态学运算,如腐蚀和膨胀,可以进一步减少噪声,并填充前景目标的空洞。 最后,可以将前景目标绘制在原始视频帧上,以便在屏幕上显示或保存图像。 使用OpenCV进行前景提取的主要步骤包括采集背景模型、创建背景减除器、应用背景减除器、应用形态学运算和绘制前景目标。这样可以快速从视频中提取出前景,并进行下一步的处理或分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_44119674

觉得有帮助,鼓励下吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值