信息论:Probability

定义:
随机试验 Experiment: 即呈现不确定性的试验,比如投出骰子
样本空间 Sample space:随机试验所有可能的结果的集合
随机事件 Event:样本空间的子集,可能包含多个元素
随机变量 Random variable:通常是把随机事件用数学方法表示

1. Random variable

RV,通常用 X 表示,是一个函数
这个函数可以将一个实数 x 分配给一个 outcome o,即:
X ( o ) = x X(o)=x X(o)=x

其中, P ( X = x ) P(X=x) P(X=x)是随机变量 X 取值为 x 的概率

多个 outcome 可能会映射到同一个实数 x,但不同的数不能分配给同一个 outcome

每个 RV 有他的 range,如果这个 range 里的数有限,或可数无穷,则这是一个离散 RV

掷骰一次产生的结果为:
在这里插入图片描述

掷骰两次产生的结果为:
在这里插入图片描述

其中 A 是 alphabet

2. CDF, PDF

CDF 是累积分布函数,定义为:
在这里插入图片描述

Complementary CDF 为:
在这里插入图片描述

PDF 是概率密度函数,定义为:
在这里插入图片描述

3. Binomial distribution

如果 RV 满足二项分布,系数为 n 和 p,我们可以将其表示为:
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)

那么,n 次尝试中取得 k 次成功的概率为:
在这里插入图片描述
对于 k = 0,1,2,3…,n,可以得到
在这里插入图片描述
即 binomial coefficient

4. Conditional probability

在这里插入图片描述
这指的是 B 发生的情况下 A 发生的概率,如果 A 和 B 是两个独立的事件,则
在这里插入图片描述

5. Chain rule

在这里插入图片描述

6. Law of total probability

在这里插入图片描述

其中 B1, B2, B3…BN 合起来构成一个完备事件组
其中不同的 B 之间互不相容,且所有 B加起来为全集

7. Baye’s rule

贝叶斯定理讨论了条件概率和边际概率

对于事件A和B,当 B 的概率不为 0,时,有
在这里插入图片描述

与上一条全概率相结合,可以得到
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值