文章目录
定义:
随机试验 Experiment: 即呈现不确定性的试验,比如投出骰子
样本空间 Sample space:随机试验所有可能的结果的集合
随机事件 Event:样本空间的子集,可能包含多个元素
随机变量 Random variable:通常是把随机事件用数学方法表示
1. Random variable
RV,通常用 X 表示,是一个函数
这个函数可以将一个实数 x 分配给一个 outcome o,即:
X
(
o
)
=
x
X(o)=x
X(o)=x
其中, P ( X = x ) P(X=x) P(X=x)是随机变量 X 取值为 x 的概率
多个 outcome 可能会映射到同一个实数 x,但不同的数不能分配给同一个 outcome
每个 RV 有他的 range,如果这个 range 里的数有限,或可数无穷,则这是一个离散 RV
掷骰一次产生的结果为:
掷骰两次产生的结果为:
其中 A 是 alphabet
2. CDF, PDF
CDF 是累积分布函数,定义为:
Complementary CDF 为:
PDF 是概率密度函数,定义为:
3. Binomial distribution
如果 RV 满足二项分布,系数为 n 和 p,我们可以将其表示为:
X
∼
B
(
n
,
p
)
X\sim B(n,p)
X∼B(n,p)
那么,n 次尝试中取得 k 次成功的概率为:
对于 k = 0,1,2,3…,n,可以得到
即 binomial coefficient
4. Conditional probability
这指的是 B 发生的情况下 A 发生的概率,如果 A 和 B 是两个独立的事件,则
5. Chain rule
6. Law of total probability
其中 B1, B2, B3…BN 合起来构成一个完备事件组
其中不同的 B 之间互不相容,且所有 B加起来为全集
7. Baye’s rule
贝叶斯定理讨论了条件概率和边际概率
对于事件A和B,当 B 的概率不为 0,时,有
与上一条全概率相结合,可以得到