【简洁明了】调节大模型的prompt的方法【带案例】


因为网上给出的调节prompt都 过于详细,这里挑选出了一些 常用但足够用的调节大模型prompt的方法。方便大家看完后 简洁明了快速掌握调节prompt的技巧

以下是一些技巧和例子,帮助你更好地调prompt:

1. 明确任务目标

确保你的提示词明确地表达了你希望模型完成的任务
(明确的任务指令任务类型(如生成文本回答问题分类等)以及期望的输出格式

例子:

  • 不明确的提示词:“讲个故事。”
  • 明确的提示词:“请讲一个关于勇敢的小狗拯救森林的故事,故事中要有三个主要角色和一个令人惊讶的结局。”

2. 提供上下文

为模型提供必要的背景信息,以便它能够生成更相关的内容。

例子:

  • 无背景信息:“给我写一篇关于人工智能的文章。”
  • 有背景信息:“请写一篇关于人工智能在医疗领域应用的文章,重点介绍其在诊断和治疗中的作用。”

3. 指定格式

如果你需要特定格式的输出,明确说明
(在prom

### 智能机器人模型提示(Prompt)的设计与应用 #### 1. Prompt Engineering 的定义及其重要性 Prompt Engineering 是一门专注于设计和优化用于引导人工智能系统行为的输入指令的技术。对于智能机器人而言,精心设计的提示词能够显著提升其性能和服务质量[^3]。 #### 2. 应用领域概述 在多个应用场景中都能见到这项技术的身影,比如但不限于问答系统、文本摘要生成、机器翻译以及情感分析等方面。这些功能使得智能机器人能够在不同行业提供更加精准的服务和支持[^1]。 #### 3. 构建高效 Prompt 的原则 为了使智能机器人更好地理解并响应人类意图,以下是几个关键的设计准则: - **清晰简洁**:保持语句简单明了,避免复杂难懂的专业术语; - **具体明确**:给出具体的上下文信息以便于AI准确把握任务需求; - **积极正面**:采用鼓励性的措辞激发更好的交互效果; - **多样化尝试**:根据不同情况整表达方式以适应各种对话场景。 ```python def generate_prompt(task_description, context=None): """ 根据给定的任务描述和可选的情景背景创建一个有效的提示字符串 参数: task_description (str): 描述所需执行的具体操作或查询的内容 context (dict, optional): 提供额外的信息帮助细化请求,默认为空 返回值: str: 经过优化后的完整提示串 """ base_prompt = f"请按照如下指示完成{task_description}" if context is not None and isinstance(context, dict): additional_info = " ".join([f"{key}: {value}" for key, value in context.items()]) full_prompt = f"{base_prompt} ({additional_info})" else: full_prompt = base_prompt return full_prompt ``` 此函数展示了如何基于特定任务构建基础提示,并可根据实际需要加入更多细节来增强准确性。 #### 4. 实际案例展示 假设有一个客服类别的智能聊天机器人,当客户咨询产品退货政策时,可以通过下面这种方式构造提示: `generate_prompt("解释公司的退换货规定", {"product_type": "电子产品"})` 这将返回类似于这样的结果:“请按照如下指示完成解释公司的退换货规定 (产品类型: 电子产品)”,从而指导AI针对该类别商品做出恰当回应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值