【专家分享】模型Prompt调优的实用技巧与经验总结

本文详细阐述了prompt的设计要素,包括引导语、上下文信息等,还介绍了多种prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的prompt设计。

一、Prompt工程简介

Prompt 是用户与大语言模型交互的起始点,它告诉模型用户的意图,并且期望模型能以有意义且相关的方式回应。当我们希望大语言模型去完成一些较为复杂的任务时,prompt的质量决定了大语言模型能否有好的回复。通过精心设计的prompt,我们能够有效地指引大型语言模型(LLM),深化其对用户需求的理解层次,从而激发更加精准且实用的回应生成。

二、Prompt设计

2.1 Prompt主要构成要素

Prompt主要包含以下要素:

  1. 引导语或指示语:告诉模型你希望它执行哪种类型任务,比如回答问题、提出建议、创作文本等。

  2. 上下文信息:提供足够的背景信息,以便模型能够更好地理解和处理请求。上下文信息可能包括具体情景、相关数据、历史对话信息等内容。

  3. 任务描述:明确地描述你期望模型执行的任务。它可以是一个问题、一个命令性语句或者是一个场景描述。

  4. 输出格式指示:如果你对输出结果有特定的格式要求,应在prompt中说明。比如,你可以指定输出应该是列表形式、一段连贯的文本还是一系列步骤等。

  5. 限制条件:设置一些约束条件,指导模型避免某些类型的回答或者引导模型产生特定风格的内容。例如,可以限制回答的字数、要求避免使用专业术语等。

  6. 样例输出:提供一个或多个例子可以帮助LLM理解所期望的输出类型和质量。

  7. 结束语:如果有必要,可以使用结束语来标示prompt的结束,尤其是在连续的对话或者交互中。

这些要素并不是每个prompt都必须包含的,但根据特定的需求和上下文,合适地结合这些要素可以提高LLM生成的文本质量和相关性。

2.2 Prompt编写策略

策略一:对较难被准确遵循的复杂规则可拆分为多条规则,有助于提升效果

原prompt规则描述:

对于推销结果的判定,如果提及了【支付、办手续、签字、合同】则是“成交”,如果提及了【再看、考虑、不要、再联系、不需要、放弃、先不】则是“未成交”,其他情况视为“无法识别是否成交”。

原prompt较难准确判断成交结果,故将该规则一拆为二:

  • 规则1:成交,对话提及支付行为,如:支付宝、微信、转账支付等视为合规。
  • 规则2:未成交,客户表达态度,如:考虑、暂时、先不用、不需要、不升级、不考虑、放弃等犹豫或否定词语视为合规。

推销结果:从【成交、未成交、未知】中三选一,参考规则1、规则2的结论,得出结果。

策略二:适当冗余关键信息

对于一些逻辑关系比较复杂的前提条件,可以适当在prompt中重复强调,增加其在模型记忆中的权重,从而降低推理偏差。

例如:

🟡 要求生成指定字数内的标题,但模型对指令遵循效果较差。

🟢 尝试多个层级中【反复多次强调】“生成字数”要求,如下:

#创作要求:每个标题字数不得超过15个字。#检查步骤:检查每个标题字数是否超出了15个字,要求每个标题字数必须小于15个字。

策略三:使用分隔符给prompt分段

善于利用分隔符,帮助大模型更好地理解提示内容;prompt内容越复杂,分隔符的作用就越重要,对大模型的理解能力有所帮助。

原始prompt:

请对以下内容进行文本摘要,分析情感倾向,并提取所有重要事实和数据。亿航智能(EH.US)涨超11% - 英国财情报道,亿航智能(EH.US)的股价在今日交易中涨幅超过11%。这一涨幅可能与该公司在全球首台国产“空中的士”项目中的进展有关,显示出市场对于无人机技术和空中交通解决方案的积极反应。

加入分隔符后的:

请对提供的文本内容进行以下分析:- 文本摘要:提供该段落的简短摘要。- 情感分析:确定文本的情感倾向,是积极的、消极的还是中性的。- 关键信息提取:列出文本中提到的所有重要事实和数据。文本内容:‘’‘亿航智能(EH.US)涨超11% - 英国财情报道,亿航智能(EH.US)的股价在今日交易中涨幅超过11%。这一涨幅可能与该公司在全球首台国产“空中的士”项目中的进展有关,显示出市场对于无人机技术和空中交通解决方案的积极反应。’‘’

可以看到通过加入分隔符后,prompt的结构更加清晰,这样也便于大语言模型更好地理解这个任务。

策略四:增加学习示例

从大语言模型获得更好输出的最佳方法之一是在提示中包含示例,可以在prompt添加示例帮助LLM从少量示例中学习和概括信息。

给出实例的方式包括两种:

  1. 给出输出示例:给出一个示例将有助于LLM理解期望的结果。特别是在有特定的输出格式要求时,给出示例有助于LLM遵循输出要求。例如:

请根据以下格式给我推荐三本书:书名: [书名]作者: [作者]出版年份: [年份]简短描述: [描述]示例输出:书名: 《追风筝的人》作者: 卡勒德·胡赛尼出版年份: 2003简短描述: 这是一个关于友谊和救赎的故事,发生在动荡的阿富汗历史背景下。

  1. 给出任务相关样例:

该方法也称为小样本学习(few-shot learning),是指在训练模型时仅使用极少量的样本数据进行学习和推理的任务。给出任务相关样例可以带来如下优势:

  1. 直观展示:样例提供了一个直观的输出模板,帮助模型理解任务的具体要求。

  2. 减少误解:通过样例,模型可以更准确地把握用户的意图,减少对指令的误解。

  3. 提高一致性:样例确保了输出的一致性,使得模型生成的回答遵循相同的格式和风格。

  4. 简化指令:有时候,一个简单的样例比复杂的指令更容易被模型理解和执行。

例如:

请根据以下样例将这篇文章分类为科技、体育或娱乐:样例1:文章内容:介绍最新智能手机的规格和功能。分类:科技样例2:文章内容:关于即将举行的国际足球赛事的报道。分类:体育现在,请对以下文章进行分类:文章内容:[用户提供的文章内容]

策略五:编写清晰地说明 - 指定任务所需的步骤

部分任务实现建议要求大模型按指定步骤生成,明确写出这些步骤可以让模型更容易遵循这些步骤。这样做是指:比如你会突发奇想,让LLM为你推理一个复杂的问题。与其直接让他告诉你推理的最终答案,不如告诉它为了完成推理,需要几个步骤去思考并生成对应的内容。这样做会大大的提升推理的靠谱程度,也有助于我们自己检查中间出现的问题。这样做的好处是:

  1. 明确性:具体的步骤可以确保模型或执行者明确知道需要做什么,避免误解或遗漏。

  2. 结构化:步骤化的任务更加结构化,可以帮助模型或执行者按照逻辑顺序执行,确保任务的连贯性。

  3. 效率:当任务被分解为小的、具体的步骤时,模型可以更加高效地完成每一个步骤,而不是在不确定如何进行时浪费时间。

  4. 易于监控:明确的步骤使得监控任务的进度变得更加容易。可以清楚地知道哪些步骤已经完成,哪些步骤还没开始。

  5. 减少错误:具体的步骤可以减少执行任务时的错误。当每一步都被明确指定时,模型更不容易犯错。

  6. 便于复查:如果任务的结果不如预期,有了明确的步骤可以帮助我们回溯和分析问题出在哪一步,从而进行调整。

  7. 提高透明度:对于用户来说,明确的步骤可以帮助我们理解任务的执行过程,提高工作的透明度。

策略六:让大模型反思自己的推理过程

大模型对指令的遵循效果依赖于指令的表达是否贴合大模型的推理逻辑。因此,在对内容表达的考量,或解决错误响应问题前,建议先行了解大模型的推理过程或输出依据,讲“大模型话”。

  1. 初期,借助指令要求大模型生成某任务所需的prompt,以得到大模型可理解的prompt初始框架。

  2. 持续迭代期,在实践中,我们会发现,LLM生成的结果存在一些较难理解的bad case,这种情况下我们可以引导大模型进行一些自我反思,回顾其推理过程或输出依据,以了解bad case背后的原因,进而指导我们调整prompt。

策略七:语音场景下的prompt要点

在销售线索挖掘,电信欺诈识别,服务质量质检等相关场景上,有个前置因素就是要将语音转文本后,大模型再进一步对文本做分析。很多时候,因转写效果而影响到了文本意图,花大量时间做转写优化,或是将常出现转写错误的词,在prompt中澄清等措施解决。可在prompt如下说明:

有些词可能翻译描述错误,你需要基于语境理解原本意思,不要直接因错别字判定不合规。

策略八:判断型的任务,建议先给依据,再出结论

分析判断型的任务,直接让大模型出结论,经常出现标签正确,结论错误。或是标签错误但结论正确的现象。更推荐:先出依据,再出规则命中结论。

约束输出内容&格式时,建议要求大模型先输出规则命中依据(如命中句子)或者判断理由,再输出命中结果,相较准确率表现更佳,如要求大模型按以下格式返回下:

{“reason”:“判断原因”,“result”:“判别结果”}

三、总结

总结来说,prompt 调优是一个不断重复和迭代的过程,整体上需要:

  1. 尝试不同的prompt方法:

在prompt的生成过程中,可能需要尝试各种语言模式、词汇的使用,甚至是不同的语法结构。每次尝试都应该以评估集为基准进行测试,以观察变更对系统性能的影响。

  1. 调整和优化:

根据测试结果,你需要对prompt进行调整和优化。这可能包括微调某些词语的选择,改变提问的方式, 调整语言风格, 也可能是大幅度改变prompt的结构。

  1. 记录和分析:

每次实验之后,都应该详细记录结果,并进行分析。这些记录可以帮助你理解哪些改变是有效的,哪些是无效的,从而指导未来的调整方向。

  1. 迭代循环:

在每一轮测试和优化之后,都需要重新评估prompt的效果。通过这样的迭代循环,你可以逐步接近最优的prompt设计。

如果你对AI大模型应用感兴趣,这套大模型学习资料一定对你有用。

1.大模型应用学习大纲

AI大模型应用所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

2.从入门到精通全套视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
在这里插入图片描述
在这里插入图片描述

3.技术文档和电子书

整理了行业内PDF书籍、行业报告、文档,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

请添加图片描述

朋友们如果有需要全套资料包,可以点下面卡片获取,无偿分享!

<think>嗯,用户想了解如何通过Prompt模型,特别是设计方法和应用场景。首先,我需要回顾一下Prompt的基本概念。根据引用[1],Prompt Tuning适用于需要快速且不改变模型内部参数的场景,比如问答系统、情感分析等。那设计方法的话,可能需要考虑不同的策略,比如直接指令、上下文示例、符号化模板等等。 然后,用户可能想知道具体有哪些设计方法。比如,直接指令法就是明确告诉模型任务,比如“请将以下文本分类为正面或负面情感:”。还有上下文学习,通过提供示例让模型理解任务。比如在翻译任务中给出几个例句,然后让模型继续翻译新的句子。符号化模板可能更结构化的,像填空式模板,比如“这句话的情感是__”。 接下来是应用场景,根据引用[1]和[3],Prompt工程就像考试大纲,引导模型生成好的输出。应用场景可能包括问答系统、文本生成、分类任务、信息抽取、翻译和摘要等。比如在客服场景中,Prompt可以设计成让模型生成简洁的回答,或者根据知识库检索结果来回答。 化策略也很重要,比如渐进式提示,分步骤引导模型,或者使用系统消息设置角色。比如让模型扮演医生角色来分析症状,这样可能更专业。还有动态提示,根据用户输入实时整模板,比如先判断用户意图再生成回复。 另外,需要注意Prompt设计的要点。比如明确性,任务要清晰;一致性,输入输出格式统一;可解释性,避免模糊的符号;容错性,处理边界情况。比如在情感分析中,可以补充“如无法判断请返回中立”。 用户可能还会关心如何验证Prompt的有效性,可能需要A/B测试或者人工评估。还有结合其他微方法,比如引用[2]提到的LoRA、Prefix tuning等,可能需要结合使用来提高效果。 可能用户的实际问题是如何开始设计Prompt,应该从哪些方面入手。可能需要先明确任务类型,然后择合适的设计方法,比如指令式还是填空式,再根据反馈整。同时,参考社区资源,比如Hugging Face的开源库,里面有很多实践案例。 最后,生成相关问题的时候,要考虑用户可能进一步想知道设计原则、评估方法、常见错误、传统微的区别,以及具体的行业应用案例。比如医疗领域如何使用Prompt来处理病历分析等。</think>### Prompt模型的设计方法及应用场景 #### 一、Prompt核心原理 通过修改输入文本的结构和语义提示(Prompt),引导预训练模型生成符合特定任务的输出,无需改动模型参数。这种方法利用大模型对语言模式的强大理解能力,将下游任务"翻译"为模型熟悉的表达形式[^3]。 #### 二、Prompt设计方法论 1. **直接指令法** 使用明确的任务指令作为Prompt: ``` "请将以下文本分类为正面/负面情感:{输入文本}" ``` 适用场景:情感分析、意图识别等分类任务[^1] 2. **上下文学习(In-context Learning)** 提供示例样本引导模型学习: ```python # 翻译任务示例 "苹果 -> apple 香蕉 -> banana 橘子 -> { }" ``` 适用场景:低资源语言翻译、格式转换 3. **符号化模板** 构建结构化占位符: ```python "这句话的情感是__。原文:{text}" # 填空式模板 ``` 适用场景:关系抽取、实体识别 4. **元提示(Meta-prompt)** 动态描述任务要求: ``` "你是一个资深律师,请用专业术语解释以下法律条文:{条款内容}" ``` 适用场景:专业化文本生成 #### 三、典型应用场景 | 场景类型 | Prompt设计示例 | 技术特点 | |----------------|----------------------------------------|----------------------------| | 智能客服 | "根据用户问题生成3个最简答的回复项" | 输出格式控制 | | 医疗问答 | "基于最新诊疗指南分析以下症状:{症状描述}" | 领域知识引导 | | 码生成 | "用Python实现快速排序,添加中文注释" | 多模态输出要求 | | 知识增强 | "参考[知识库]回答:{问题}" | 外部信息融合 | #### 四、化策略 1. **渐进式提示** 分步骤引导模型思考: ```python """ 第一步:识别文本中的实体 第二步:分析实体间关系 第三步:输出JSON格式结果 输入文本:{text} """ ``` 2. **系统消息** 设置模型角色属性: ```python system_prompt = "你是有10年经验的呼吸科主任医师,用中文回答时使用专业术语但通俗易懂" ``` 3. **动态模板** 根据输入实时生成Prompt: ```python def generate_prompt(user_input): if "翻译" in user_input: return "将以下中文翻译成英文:{text}" else: return "回答以下问题:{question}" ``` #### 五、设计要点 1. **明确性**:任务描述需无歧义 *劣质示例*:"处理这个" → *质示例*:"总结以下文本的核心观点(不超过50字)" 2. **一致性**:保持输入输出格式统一 ```python # 输入模板 "问题:{question}\n背景知识:{knowledge}\n要求:分点回答" ``` 3. **可解释性**:避免使用晦涩符号 *劣质示例*:"T→F: {text}" → *质示例*:"判断以下陈述真假:{text}" 4. **容错性**:处理边界情况 ```python "如果无法确定情感倾向,请返回'中立'。文本:{text}" ``` #### 六、效果验证方法 1. **A/B测试**:对比不同Prompt版本的输出质量 2. **人工评估**:设置准确性、相关性等评估维度 3. **自动指标**:使用BLEU、ROUGE等指标量化评估 通过合理设计Prompt,可以在不修改模型参数的情况下,使175B参数级别的模型在特定任务上达到接近监督学习的性能[^2]。实际应用中常LoRA等参数高效微方法结合使用,形成"Prompt+参数微"的混合方案[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值