VINS学习(一)视觉前端 VINS-Mono是HKUST的Shen Shaojie团队开源的一套Visual-Inertial紧耦合融合定位算法,https://github.com/HKUST-Aerial-Robotics/VINS-Mono。
LeGo-LOAM框架后端优化总结 LeGo-LOAM是发表于IROS2018年的文章,全称为:Lightweight and Ground-Optimize Lidar Odometry and Mapping on Variable Terrain.
激光SLAM里程计算法总结(ICP、NDT与运动畸变) 在导航系统中,里程计(Odometry)数据用来估算机器人位置随时间的PCL点云库中ICP方法的使用:PL-ICP是二阶收敛,ICP是一阶收敛PL-ICP对初始值更敏感以点到线的误差为目标函数,PL-ICP的求解精度更高正态分布变换 (Normal Distribution Transform)与ICP不同, NDT 假设点云服从正态分布,我们的目的是找一个姿态,使得当前扫描点位于扫描参考平面的可能性最大。最后概率密度函数可以表示为:目标函数为:s(p⃗)=∑k=1n...
解决向日葵连接ubuntu时连接已断开问题方法 解决向日葵连接ubuntu时连接已断开问题方法确认电脑是否已连接显示器,向日葵需要连接显示器。终端输入cat /etc/X11/default-display-manager,若显示的不是\usr\sbin\lightdm则这个方法可以解决连接问题,若显示正确,本文提到的方法并不能解决向日葵的连接问题。终端依次输入:sudo apt-get updatesudo apt-get upgradesudo apt-get install lightdm最后会出现一个选择界面,请选择l
IMU预积分模型分析 IMU预积分模型分析1.预积分计算2.连续时间下预积分方差更新矩阵计算2.1 δθ˙tbk\delta \dot \theta^{b_k}_tδθ˙tbk的微分推导1) 写出不考虑误差的微分方程2) 写出不考虑误差的微分方程3) 写出带误差的值与理想值之间的关系4) 将带误差的值与理想值之间的关系带入2)5) 把1)中的关系带入4)6) 化简方程2.2 δβ˙tbk\delta \dot\beta^{b_k}_tδβ˙tbk的微分推导1) 写出不考虑误差的微分方程2) 写出不考虑误差的微分方程3)
【论文阅读】Tightly Coupled 3D Lidar Inertial Odometry and Mapping Tightly Coupled 3D Lidar Inertial Odometry and Mapping摘要I. 介绍II. 相关工作III. 符号与说明A. 符号A. IMU运动本文主要是对LIO-Mappingt论文的一些学习总结,具体的参考文献请参考原文,如有不对之处,希望大家提出宝贵的意见,共同进步~摘要运动估计是移动机器人的基本要求之一,通过传感器融合我们可以弥补单一传感器的缺陷并提供更可靠的运动估计。在这篇文章中,我们介绍一种Lidar-IMU紧耦合融合方法。提供通过联合最小化雷达和I
一文详解线性最小二乘与非线性最小二乘 一文详解线性最小二乘与非线性最小二乘一、最小二乘法的引出二、线性最小二乘法三、非线性最小二乘法一、最小二乘法的引出我们考虑下面一个方程组的求解:x1+x2=5x1−x2=3x1+x2=4x_1+x_2=5 \\x_1-x_2=3 \\x_1+x_2=4 \\x1+x2=5x1−x2=3x1+x2=4可以写成形如Ax=bAx=bAx=b的矩阵形式:[111−111][x1x2]=[534]\begin{bmatrix}1 & 1\\ 1 & -
G2O使用时遇到的一些编译问题 g2o::LinearSolverEigen g2o::LinearSolverDense g2o::LinearSolverCSparse g2o::LinearSolverCholmod是常用的线性方程求解器一套可运行程序(包括不同梯度下降优化器)链接: https://pan.baidu.com/s/1PyJ4kU3Jx6FGfWR23VzwfA 提取码: 3uw6使用需要三个地方注意1.Cmakelist应当find了对应库,链接了这些线性方程求解器的lib,部分Cmakelist
【论文阅读】Super Odometry: IMU-centric LiDAR-Visual-Inertial Estimator for Challenging Environments Super Odometry: IMU-centric LiDAR-Visual-Inertial Estimator for Challenging Environments摘要I. 介绍II. 相关工作A. 松耦合激光-视觉-惯性里程计B. 紧耦合激光-视觉-惯性里程计C. 方法要点III.系统概述IV. 方法论A. IMU里程计因子1) IMU预积分因子:2) IMU里程计优化:B.激光惯性里程计因子1) 基于PCA的特征提取2) 多尺度ICP因子3) 激光惯性里程计优化4) 动态八叉树C.视觉惯性里
SLAM库学习: 从因子图到GTSAM SLAM库学习: 从因子图到GTSAM一、从贝叶斯网络到因子图优化1. 贝叶斯网络2. 因子图3. 非线性最小二乘问题4. 线性最小二乘问题(1) QR分解(2) Cholesky 分解二、iSAM2三、GTSAM实战一、从贝叶斯网络到因子图优化1. 贝叶斯网络分析上图的贝叶斯网络,机器人状态x0x_0x0、x1x_1x1、x2x_2x2、x3x_3x3满足一阶马尔科夫性;空间中存在路标l1l_1l1、l2l_2l2、l3l_3l3;而z1z_1z1到z8z_8z8分别代表了在机器
MATLAB R2017b for Ubuntu 20.04安装 1.下载与解压MATLAB R2017b Linux 安装包下载地址:链接:https://pan.baidu.com/s/1zM6y_LBdyMP9YAfujcOw5A 密码: m7lq解压缩:cat R2017b_glnxa64.* > R2017b_glnxa64_all.zip unzip R2017b_glnxa64_all.zip sudo apt-get updatesudo apt-get install unrarsudo rar x MATLABR2017b_
自动驾驶常用传感器介绍 自动驾驶常用传感器介绍一、摄像头1. 概述2. 摄像头在自动驾驶中的应用3. 车规级摄像头性能要求4. 摄像头的优劣势分析5. 摄像头关键参数二、激光雷达1. 概述2. 工作原理3. 激光雷达的特性4. 激光雷达的分类5. 激光雷达在自动驾驶中的应用三、毫米波雷达1. 概述2. 工作原理3. 在自动驾驶行业中的应用4. 毫米波雷达的优劣势5. 毫米波雷达性能参数四、惯性传感器(IMU)1. 概述2. IMU的特性3. 在自动驾驶中的应用五、GNSS与RTK1. GNSS介绍2. RTK介绍3. 在自动驾驶中
LeGO-LOAM源码解析5: featureAssociation(三) featureAssociation.cpp解析三七、优化初始化八、特征关联1. 更新初始位姿updateInitialGuess2. 更新变换矩阵updateTransformation3. 更新累积变化矩阵integrateTransformation4. 里程计发布publishOdometry5. 发布点云publishCloudsLastloam源码地址:https://github.com/RobustFieldAutonomyLab/LeGO-LOAM.论文学习:【论文阅读】LeGO-LO
LeGO-LOAM源码解析4: featureAssociation(二) featureAssociation.cpp解析二五、运行接口函数runFeatureAssociation六、曲率计算与特征提取1. 畸变去除adjustDistortion(1) 线性插值具体流程(2) 投影函数a) 速度投影VeloToStartIMUb) 点云投影TransformToStartIMU2. 计算平滑度calculateSmoothness3. 去除不可靠点markOccludedPoints4. 特征提取extractFeatures5. 点云发布publishCloud七、特征
LeGO-LOAM源码解析3: featureAssociation(一) featureAssociation.cpp解析一、概述二、main函数loam源码地址:https://github.com/RobustFieldAutonomyLab/LeGO-LOAM.论文学习:【论文阅读】LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain.LeGO-LOAM源码解析汇总:LeGO-LOAM源码解析1 : 算法整体框架和utility.h.Le
LeGO-LOAM源码解析2: imageProjection imageProjection.cpp解析一、概述二、main函数三、ImageProjection类的私有对象四、ImageProjection类的构造函数五、初始化函数allocateMemory与resetParameters1. 内存分配allocateMemory2. 重置参数resetParameters六、回调函数cloudHandlerloam源码地址:https://github.com/RobustFieldAutonomyLab/LeGO-LOAM.论文学习:【论文阅读】LeGO-