从零开始的 AI Infra 学习之路

从零开始的 AI Infra 学习之路

一、概述

AI Infra(AI 基础设施)是指为上层的 AI 算法应用提供支持的 AI 全栈底层技术,通过合理利用计算机体系结构,可以实现 AI 计算的加速和部署。

AI Infra 主要包括以下内容:

  • AI 训练框架 & 推理引擎;

  • AI 编译 & 计算架构;

  • AI 硬件 & 体系结构。

在这里插入图片描述

参考资料:

二、AI 算法应用

2.1 机器学习

……

2.2 深度学习

2.3 LLM

token:文本中最小的语义单元,如:单词、符号等(tokenization:分词)。

编码(encoding):将子词序列转换为数值向量。

解码(decoding):将每个数值编码替换成其对应的子词,然后将相邻的子词合并成最长的匹配单词,从而得到一个文本。

嵌入(embedding):子词 -> 特征向量,表示该子词的语义。基于互联网上大量的文本资料,统计出两个词语在相邻/句子/文章中共同出现的概率并通过权重来汇总计算,就能分析出某个词语与另外一个词语的亲密度的数值,并将这个数值作为特征向量来描述这个词语。通过嵌入,我们就可以把每个子词看作是高维空间中的一个点,而这些点之间的距离和方向,就可以表示出子词之间的相似度和差异度(词义相似时,在空间上也相近)。

预测(prediction):根据给定的文本,计算出下一个子词出现的概率。下一个子词出现概率的计算,就是基于特征向量表进行的。

小结:通过嵌入和预测,我们就可以实现从文本到数字,或者从数字到文本的转换。

训练 & 推理

生成:指根据给定的文本来生成新的文本的过程。生成可以分为两种模式:自回归(autoregressive)和自编码(autoencoding),GPT 系列主要采用了自回归模式。

参考资料:

Transformer

参考资料:

三、AI 开发体系

3.1 编程语言

四、AI 训练框架 & 推理引擎

4.1 PyTorch

4.2 llama.cpp

……

4.3 vLLM

五、AI 编译 & 计算架构

5.1 CUDA

……

5.2 CANN

六、AI 硬件 & 体系结构

6.1 INVIDIA GPU

6.2 Ascend NPU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值