栈——栈的定义及基本操作(初始化、判空、进栈、出栈、遍历栈、销毁栈等)

本文详细介绍了栈这种数据结构,包括其定义、存储方式(顺序栈和链栈)、基本操作(如初始化、判空、进栈等)以及共享栈的概念。通过实例演示了栈的基本操作流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

栈的定义

栈(Stack)是只允许在一端进行插入或删除操作的线性表。

栈的示意图:
栈

  • 栈顶Top:线性表允许插入和删除的那一端。
  • 栈底Bottom:固定的,不允许进行插入和删除的另一端。

 假设某个栈S={a1,a2, … ,an},如上图所示,则a1为栈底元素,an为栈顶元素。由于只能在栈顶进行插入和删除操作,故进栈顺序为a1,a2, … ,an,出栈顺序为an, … ,a2,a1。故栈的操作特性是后进先出LIFO(Last In First Out),称为后进先出的线性表。

 空栈:不含任何元素的空表。


栈的存储

 栈的存储方式有两种:顺序栈和链栈,即栈的顺序存储和链式存储。
 采用顺序存储的栈称为顺序栈,它利用一组地址连续的存储单元存放自栈底到栈顶的元素,同时附设一个指针(top)指示当前栈顶的位置。
 栈的顺序存储类型描述:

#define MaxSize 100 //定义栈中元素的最大个数
typedef struct SqStack{
    int data[MaxSize]; //存放栈中的元素
    int top; //栈顶指针
}SqStack;

 采用链式存储的栈称为链栈,链栈便于多个栈共享存储空间和提高其效率,且不存在栈满上溢的情况。通常采用单链表实现,并且所有操作都是在单链表的表头进行的。在本文中主要是介绍了顺序栈下的一些基本操作,关于链栈的实现与单链表类似,可以参考单链表的定义及其基本操作

 栈的链式存储类型描述:

typedef struct LinkNode{
    int data; //数据域
    struct LinkNode *next; //指针域
}*LiStack; //栈类型定义


栈上的基本操作

 栈的基本操作包括:

  • 初始化InitStack(&S);
  • 判空Empty(S);
  • 进栈Push(&S, x);
  • 出栈Pop(&S, &x);
  • 读栈顶元素GetTop(S);
  • 遍历栈PrintStack(&S);
  • 销毁栈DestroyStack(&S);

 [注]以上操作均采用顺序栈来实现。


初始化

初始时设置S.top = -1。

//初始化
void InitStack(SqStack &S){
    S.top = -1;
}

判空操作

 栈空条件:S.top == -1; 栈满条件:S.top ==MaxSize-1。

//判栈空
bool Empty(SqStack S){
    if(S.top == -1){
        return true;
    }else{
        return false;
    }
}

进栈操作

 由于初始设置S.top=-1,故栈顶指针先加一,再入栈。

入栈

//入栈
void Push(SqStack &S, int x){
    if(S.top == MaxSize-1){
        cout<<"栈满"<<endl;
        return;
    }
    S.data[++S.top] = x; //指针先加一,再入栈
}

出栈操作

 先出栈,指针再减一。

出栈

//出栈
void Pop(SqStack &S, int &x){
    if(S.top == -1){
        cout<<"栈空"<<endl;
        return;
    }
    x = S.data[S.top--]; //先出栈,指针再减一
}

读栈顶元素

//读栈顶元素
int GetTop(SqStack S){
    if(S.top == -1){
        cout<<"栈空"<<endl;
        return -1;
    }else{
        return S.data[S.top];
    }
}

遍历栈

 当栈不为空时,循环输出当前栈顶元素。

//遍历栈
void PrintStack(SqStack S){
    while(S.top != -1){
        cout<<S.data[S.top--]<<" ";
    }
    cout<<endl;
}

销毁栈

 栈的销毁令S.top = -1即可。

//销毁栈
void DestroyStack(SqStack &S){
    S.top = -1;
}

完整代码及实例

 完整代码及实例:

#include<bits/stdc++.h>
using namespace std;

#define MaxSize 100 //定义栈中元素的最大个数
typedef struct SqStack{
    int data[MaxSize]; //存放栈中的元素
    int top; //栈顶指针
}SqStack;

//初始化
void InitStack(SqStack &S){
    S.top = -1;
}

//判栈空
bool Empty(SqStack S){
    if(S.top == -1){
        return true;
    }else{
        return false;
    }
}

//入栈
void Push(SqStack &S, int x){
    if(S.top == MaxSize-1){
        cout<<"栈满"<<endl;
        return;
    }
    S.data[++S.top] = x;
}

//出栈
void Pop(SqStack &S, int &x){
    if(S.top == -1){
        cout<<"栈空"<<endl;
        return;
    }
    x = S.data[S.top--];
}

//读栈顶元素
int GetTop(SqStack S){
    if(S.top == -1){
        cout<<"栈空"<<endl;
        return -1;
    }else{
        return S.data[S.top];
    }
}

//遍历栈
void PrintStack(SqStack S){
    while(S.top != -1){
        cout<<S.data[S.top--]<<" ";
    }
    cout<<endl;
}

//销毁栈
void DestroyStack(SqStack &S){
    S.top = -1;
}

int main(){
    SqStack S;
    InitStack(S);
    Push(S,1);//入栈
    Push(S,2);
    Push(S,3);
    Push(S,4);
    cout<<"栈顶元素为:"<<GetTop(S)<<endl;
    cout<<"出栈顺序为:";
    PrintStack(S);
    int x;
    Pop(S,x);
    cout<<x<<"出栈"<<endl;
    cout<<"栈中剩余元素:";
    PrintStack(S);
    Pop(S,x);
    cout<<x<<"出栈"<<endl;
    cout<<"栈中剩余元素:";
    PrintStack(S);
    if(!Empty(S)){
        cout<<"当前栈不为空"<<endl;
    }else{
        cout<<"当前栈为空"<<endl;
    }
    return 0;
}

 运行结果:
在这里插入图片描述


共享栈

 利用栈底位置相对不变的特性,可以让两个顺序栈共享一个一维数据空间,将两个栈的栈底分别设置在共享空间的两端,两个栈顶向共享空间的中间延伸。如下图所示:

共享栈
两个栈的栈顶指针都指向栈顶元素。

判空:top0 = -1 时0号栈为空, top1 = MaxSize-1 时1号栈为空。

栈满:当且仅当两个栈顶指针相邻,即top1 - top0 = 1 时栈满。

进栈:0号栈进栈时,top0先加一再赋值, 1号栈进栈时top1先减一再赋值。

出栈:0号栈出栈时,先出栈top0再减一, 1号栈出栈时先出栈top1再加一。

顺序是一种基于数组实现的数据结构,它按照后进先出(LIFO,Last In First Out)的原则进行数据存储。以下是顺序基本操作及其实现: 1. **初始化(创建)**: ```cpp Stack<int> stack; // 使用C++风格的模板,创建一个整型顺序 ``` 2. **销毁(释放内存)**: 由于通常是自动管理内存的,我们不需要显式地销毁。当不再使用时,其占用的间会在程序结束时自动回收。 3. **清(pop_all)**: ```cpp while (!stack.isEmpty()) { stack.pop(); // 依次删除所有元素 } ``` 4. **是否为**: ```cpp bool isEmpty = stack.isEmpty(); // 返回true表示为 ``` 5. **求长**: ```cpp int size = stack.getSize(); // 如果没有直接的方法,可能需要记录插入元素的数量 ``` 6. **进栈(push)**: ```cpp stack.push(5); // 将整数5压入顶 ``` 7. **出栈(pop)**: ```cpp int topElement = stack.pop(); // 删除并返回顶元素,如果没有元素则抛异常 ``` 8. **取顶元素(peek)**: ```cpp int peek = stack.peek(); // 返回顶元素,但不删除 ``` 9. **遍历(打印所有元素)**: ```cpp for (int i = 0; i < size; ++i) { cout << stack.top() << " "; stack.pop(); // 为了实际查看每个元素,这里假设pop会改变顶 } ``` **顺序菜单**: 1. 初始化 2. 检查是否为 3. 查看顶元素 4. 入元素 5. 出栈元素 6. 获取长度 7. 清 8. 遍历内元素 9. 关闭
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值