查找——分块查找

分块查找结合了顺序查找和折半查找的优势,适用于大量数据的高效检索。其基本思想是将数据分块并建立索引,块间有序,块内无序。索引查找采用折半或顺序方式,块内则进行顺序查找。平均查找长度取决于索引查找和块内查找的平均长度。当块大小为√n时,平均查找长度最短。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


分块查找的概念

当数据表中的数据元素很多时,可以采用分块查找。

分块查找又称为索引顺序查找。它汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找。


分块查找的基本思想

基本思想:
<1> 将查找表分为若干子块,要求所有这些块分块有序,即后一块中所有元素的关键码均大于前一块中所有元素的关键码(块间有序);而每个块内的元素可以是无序的(块内无序)。
<2> 另外要为这些块建立一个索引表。索引表中的每个元素均含有各块的最大关键字max_key以及该块在数据表中的起始位置(也就是各块中第一个元素的地址)。

分块查找的例子:

在这里插入图片描述

分块查找的过程分为两步:

  • 在索引表中确定待查记录所在的块。由于块间有序,即索引表中的元素是有序的,故可以采用折半查找顺序查找索引表;
  • 在块内顺序查找该待查记录。由于块内无序,故只能采用顺序查找

分块查找的平均查找长度

分块查找的平均查找长度为索引查找块内查找的平均长度之和

设长度为 n n n的查找表均匀地分为 b b b块,每块有 s s s个记录,在概率相等的情况下,

如果对索引表进行顺序查找,则
A S L = b + 1 2 + s + 1 2 ASL=\frac{b+1}{2} + \frac{s+1}{2} ASL=2b+1+2s+1
且当 s = n s=\sqrt{n} s=n 时, A S L m i n = n + 1 ASL_{min}=\sqrt{n}+1 ASLmin=n +1

如果对索引表进行折半查找,则
A S L = ⌈ l o g 2 ( b + 1 ) ⌉ + s + 1 2 ASL=⌈log_2(b+1)⌉ + \frac{s+1}{2} ASL=log2(b+1)+2s+1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值