论文笔记——Generative Adversarial Nets生成对抗网络

Abstract

我们提出了一种通过对抗性过程估计生成模型的新框架,其中我们同时训练了两个模型:捕获数据分布的生成模型G和估计样本来自训练数据而不是G的概率的判别模型D。G的训练过程是最大限度地提高D犯错误的概率。 这个框架对应于一个极小极大的两人游戏。 在任意函数G和D的空间中,存在一个唯一的解,其中G恢复训练数据分布,D处处等于二分之一。 在G和D由多层感知器定义的情况下,整个系统可以用反向传播来训练。 在训练或生成样本过程中,不需要任何马尔可夫链或展开的近似推理网络。 通过对生成的样本进行定性和定量评估,实验证明了该框架的潜力。
在这里插入图片描述

1 Introduction

深度学习的前景是发现丰富的、层次模型[2],这些模型代表人工智能应用中遇到的各种数据的概率分布,比如自然图像、包含语音的音频波形,以及自然语言语料库中的符号。到目前为止,深度学习最显著的成功涉及到区分模型,通常是那些将高维、丰富的感官输入映射到类别标签的模型[14,20]。这些惊人的成功主要是基于反向传播和退出算法,使用分段线性单元[17,8,9],它们具有非常良好的梯度。由于在最大似然估计和相关策略中难以近似许多棘手的概率计算,以及由于难以在生成环境中利用分段线性单元的好处,深层生成模型的影响较小。我们提出了一种新的生成模型估计方法来克服这些困难。

在提出的对抗网络框架中,生成模型与一个对手相对立:一个判别模型,该模型学习确定样本是来自模型分布还是来自数据分布。 生成模型可以被认为类似于一组伪造者,他们试图生产假币并在未经检测的情况下使用它,而判别模型类似于警察,试图发现假币。 在这场比赛的竞争驱使两支队伍都改进自己的方法,直到假冒伪劣品与真品无法区分为止。

该框架可以为多种模型提供特定的训练算法和优化算法。在这篇文章中,我们探讨了生成模型通过一个多层感知器传递随机噪声来生成样本的特殊情况,而判别模型也是一个多层感知器。我们把这种特殊情况称为对抗性网。在这种情况下,我们可以只使用非常成功的反向传播和退出算法[16]来训练两个模型,并且只使用正向传播来训练生成模型中的样本。不需要近似推理或马尔可夫链。

2 Related work

直到最近,大多数关于深度生成模型的工作都集中在为概率分布函数提供参数说明的模型上。然后可以通过最大化对数似然来训练模型。在这个系列的模型中,也许最成功的是深玻尔兹曼机器[25]。这类模型通常具有难以处理的似然函数,因此需要对似然梯度进行无数次近似。这些困难促使了“生成机器”的发展——这种模型不能明确地代表可能性,但能够从期望的分布中生成样本。生成随机网络[4]是生成机器的一个例子,它可以用精确的反向传播训练,而不是玻尔兹曼机器所需的大量近似。这项工作扩展了生成机的概念,消除了生成随机网络中使用的马尔可夫链。

我们的工作通过生成过程反向传播导数,通过使用观察
在这里插入图片描述
在我们开展这项工作的时候,我们不知道Kingma和Welling[18]和Rezendeet al.[23]已经开发了更普遍的随机反向传播规则,允许一个人反向传播通过具有有限方差的高斯分布,并反向传播到协方差参数和均值。

这些反向传播规则可以让我们学习生成器的条件方差,我们将其作为超参数处理。Kingma和Welling[18]和Rezende等人[23]使用随机反向传播训练变分自编码器(VAEs)。像生成式对抗网络一样,变分自编码器将可微的生成器网络与第二个神经网络配对。与生成型对抗网络不同,VAE的第二种网络是一个执行近似推理的识别模型。GANs需要通过可见单元进行区分,因此不能对离散数据进行建模,而VAEs需要通过隐藏单元进行区分,因此不能具有离散的潜在变量。其他的VAElike方法也存在[12,22],但与我们的方法不太密切。

以前的工作也采取了使用判别准则来训练生成模型[29,13]的方法。 这些方法使用的标准是难以处理的深层生成模型。 他们 对于深模型,e方法甚至很难近似,因为它们涉及概率比,而概率比不能用下界概率的变分近似来近似。 噪声对比估计(NCE)[13]包括通过学习使模型对从固定噪声分布中识别数据有用的权重来训练生成模型。 使用前置 经过训练的模型作为噪声分布允许训练一系列提高质量的模型。 这可以被视为一种非正式竞争机制,在精神上类似于正式竞争 用于对抗性网络游戏。 NCE的关键局限性在于它的“鉴别器”是由噪声分布的概率密度与模型分布的比值来定义的 因此,需要有能力评估和反向传播通过这两种密度。

以前的一些工作使用了两个神经网络竞争的一般概念。最相关的工作是最小化[26]的可预测性。在可预测性最小化中,神经网络中的每个隐藏单元都被训练成不同于第二个网络的输出,第二个网络在给定所有其他隐藏单元的值的情况下预测该隐藏单元的值。该工作与最小化可预测性有三个重要的不同之处:
1)在该工作中,网络之间的竞争是唯一的训练标准,它本身就足以训练网络。可预测性最小化只是一种规则化方法,它鼓励神经网络的隐藏单元在完成其他任务时保持组织独立性;这不是主要的训练标准。
2)比赛的性质不同。在可预测性最小化中,比较了两个网络的输出,一个网络试图使输出相似,另一个网络试图使输出不同。所讨论的输出是一个单个标量。在GANs中,一个网络产生一个丰富的高维向量,作为另一个网络的输入,并尝试选择另一个网络不知道如何处理的输入。
3)学习过程的规范不同。可预测性最小化被描述为一个优化问题,目标函数被最小化,并且学习接近目标函数的最小值。gan是基于极大极小博弈而不是优化问题,并且具有一个代理寻求最大化和另一个代理寻求最小化的价值函数。游戏在鞍点处结束,鞍点在一个参与人的策略中是最小值,在另一个参与人的策略中是最大值。

生成式对抗网络有时与相关的“对抗例子”[28]概念混淆。对抗性例子是通过对分类网络的输入直接使用基于梯度的优化来找到的例子,以找到与数据相似但被错误分类的例子。这与目前的工作不同,因为对抗性例子不是训练生成模型的机制。相反,对抗性的例子主要是一种分析工具,用来显示神经网络以有趣的方式表现,经常以高度自信的方式对两幅图像进行不同的分类,即使人类观察者无法察觉它们之间的差异。这类对抗性例子的存在确实表明生成式对抗性网络训练可能是低效的,因为它们表明,在不模仿任何人类可察觉的类属性的情况下,可以使现代判别网络自信地识别一个类。

3 Adversarial nets

4 Theoretical Results

5 Experiments

6 Advantages and disadvantages

7 Conclusions and future work

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值