Logistic回归

目录

1、引出问题

2、实例解释

3、代价函数

4、简化代价函数和梯度下降

5、多对一问题




1、引出问题

当我们处理二分类问题的时候,很显然线性回归算法已经不能不能很好的满足我们的需要。那么由此引入Logistic 回归(实际用于处理分类问题)。

对于二分类问题,只有只有正类和负类,通常用0/1来表示,可以引出g(z)函数是比较符合需求的。

当g(z)>=0.5时,我们预测值为1,当g(z)<0.5时,我们预测值为0;

同时也可推出当在z>=0时,g(z)>=0.5;

又z=θTx,所以θTx>=0时,我们预测值为1,当θTx<0时,我们预测值为0;

2、实例解释

我们来看一个例子。我们假设h(x)函数用来拟合这些数据,并假设事先已经知道 θo=-1,θ1=0,θ2=0,θ3=1,θ4=1(稍等将解释怎么计算出θ的大小)。

由之前的结论θTx>=0时,我们预测值为1;

在该示例中,θTx=θo+θ1x1+θ2x2+θ3x1^2θ4x2^2  代入θ的值   θTx=-1+x1^2+x2^2

-1+x1^2+x2^2>=0      可推出     x1^2+x2^2>=1

3、代价函数

那么,我们又应该如何选取代价函数呢?如果我们继续使用原先引出的代价函数,如下图所示的话,我们得到的代价函数可能就是非凸函数了(有很多局部最优点),如果用梯度下降法来计算的话,可能就无法得到想要的结果了。

那么我们引出下图代价函数,我们来讨论预测的两种情况

当y=1时,①h(x)=1, y=1, 那么cost=0 ;

                 ②h(x)=0, y=1, 那么cost=∞ ;

当y=0时,①h(x)=1, y=0, 那么cost=∞ ;

                 ②h(x)=0, y=0, 那么cost=0 ;

 

 由上分析可知,以上代价函数是比较符合我们对二分类的需求的。

 4、简化代价函数和梯度下降

我们可以将代价函数简化为蓝色字体的函数。

在用梯度下降时,我们还需要注意的是,与之前不同的h(x)函数

5、多对一问题

当我们遇到多分类问题的时候,应该怎么处理呢?

比如,我们需要对天气进行预测,晴天、雨天、阴天;

我们采用到,当需要对“△”进行分类时,将“△”当做正类,将“□”和“×”都当做负类;

当需要对“□”进行分类时,将“□”当做正类,将“△”和“×”当做负类;

以此类推;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值