目录
1、引出问题
当我们处理二分类问题的时候,很显然线性回归算法已经不能不能很好的满足我们的需要。那么由此引入Logistic 回归(实际用于处理分类问题)。
对于二分类问题,只有只有正类和负类,通常用0/1来表示,可以引出g(z)函数是比较符合需求的。
当g(z)>=0.5时,我们预测值为1,当g(z)<0.5时,我们预测值为0;
同时也可推出当在z>=0时,g(z)>=0.5;
又z=θTx,所以θTx>=0时,我们预测值为1,当θTx<0时,我们预测值为0;
2、实例解释
我们来看一个例子。我们假设h(x)函数用来拟合这些数据,并假设事先已经知道 θo=-1,θ1=0,θ2=0,θ3=1,θ4=1(稍等将解释怎么计算出θ的大小)。
由之前的结论θTx>=0时,我们预测值为1;
在该示例中,θTx=θo+θ1x1+θ2x2+θ3x1^2θ4x2^2 代入θ的值 θTx=-1+x1^2+x2^2
-1+x1^2+x2^2>=0 可推出 x1^2+x2^2>=1
3、代价函数
那么,我们又应该如何选取代价函数呢?如果我们继续使用原先引出的代价函数,如下图所示的话,我们得到的代价函数可能就是非凸函数了(有很多局部最优点),如果用梯度下降法来计算的话,可能就无法得到想要的结果了。
那么我们引出下图代价函数,我们来讨论预测的两种情况
当y=1时,①h(x)=1, y=1, 那么cost=0 ;
②h(x)=0, y=1, 那么cost=∞ ;
当y=0时,①h(x)=1, y=0, 那么cost=∞ ;
②h(x)=0, y=0, 那么cost=0 ;
由上分析可知,以上代价函数是比较符合我们对二分类的需求的。
4、简化代价函数和梯度下降
我们可以将代价函数简化为蓝色字体的函数。
在用梯度下降时,我们还需要注意的是,与之前不同的h(x)函数
5、多对一问题
当我们遇到多分类问题的时候,应该怎么处理呢?
比如,我们需要对天气进行预测,晴天、雨天、阴天;
我们采用到,当需要对“△”进行分类时,将“△”当做正类,将“□”和“×”都当做负类;
当需要对“□”进行分类时,将“□”当做正类,将“△”和“×”当做负类;
以此类推;