【因果推断】【Introduction to Causal Inference from a Machine Learning Perspective】从机器学习的角度介绍因果推断 前言

在这里插入图片描述

先决条件 有一个主要的先决条件:基本概率。本课程假设你已经学习了概率导论课程或有同等的经验。统计学和机器学习的主题会不时出现在课程中,因此熟悉这些主题会有所帮助,但不是必需的。例如,如果交叉验证对你来说是一个新概念,你可以在书中出现的地方相对较快地学会它。我们还介绍了一些统计术语,我们将在第2.4节中使用这些术语。

主动阅读练习 研究表明,记忆材料的最佳技巧之一是主动尝试回忆你最近学过的信息。你会在整本书中看到“主动阅读练习”来帮助你做到这一点。他们将被“积极的阅读练习"标记:标题。

这本书里的许多图表 正如你将看到的,这本书里的图表多得离谱。这是故意的。这是为了给你尽可能多的视觉直觉。我们有时会复制相同的数字、方程式等。你可能在前面的章节中看到过,这样我们就可以确保这些图表总是在引用它们的文本旁边。

给我发送反馈 这是一本书的草稿,所以我非常感谢你愿意给我发送的任何反馈。如果你不确定我是否会接受,那就不要。请将任何反馈发送到 bradyneal11@gmail.com,并在您的电子邮件主题开头注明“【因果书】”。反馈可以是单词级别、句子级别、章节级别、章节级别等。以下是有用反馈类型的非详尽列表:

书目注释 虽然我们尽最大努力引用相关结果,但我们不想通过挖掘每个概念的确切来源来扰乱材料的流动。在这本书的最终版本中会有完整的书目注释部分,但它们要到课程结束后才会出现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子-Alex

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值