大数定理及中心极限定理(随机变量的数字特征)

大数定理和中心极限定理研究的是随机变量的宏观特性。
大数定理反映的是随机变量的取值与随机变量均值和方差之间的关系。
1、切比雪夫Chebyshev不等式
设随机变量X的数学期望E(X)与方差D(X)存在,则对于任意的正数 ε \varepsilon ε,下列不等式成立:
P [ ∣ X − E ( X ) ∣ ≥ ε ] ≤ D ( X ) ε 2 P[\left | X-E\left ( X \right ) \right |\ge \varepsilon ]\le \frac{D\left ( X \right ) }{\varepsilon ^2} P[XE(X)ε]ε2D(X)

P [ ∣ X − E ( X ) ∣ < ε ] ≥ 1 − D ( X ) ε 2 P[\left | X-E\left ( X \right ) \right |< \varepsilon ]\ge 1- \frac{D\left ( X \right ) }{\varepsilon ^2} P[XE(X)<ε]1ε2D(X)
说明,事件[|X-E(X)| ≥ \geq ε \varepsilon ε与|X-E(X)|< ε \varepsilon ε为对立事件。
2、大数定理-----两个定理
2.1切比雪夫定理
设独立随机变量序列 X 1 X_1 X1, X 2 X_2 X2,…, X n X_n Xn,…的数学期望为
E( X 1 X_1 X1),E( X 2 X_2 X2),…,E( X n X_n Xn),…
与方差D X 1 X_1 X1),D( X 2 X_2 X2),…,D( X n X_n Xn),…
都存在,并且方差时一致有上界的,即存在常数C,使得
D( X i X_i Xi) ≤ \leq C, i=1,2,…,n,…
则对于任意的正数 ε \varepsilon ε,有
lim ⁡ n → ∞ P ( ∣ 1 n ∑ 1 n X i − 1 n ∑ 1 n E ( X i ) ∣ < ε ) = 1 \lim_{n \to \infty} P\left (\left | \frac{1}{n}\sum_{1}^{n}X_i-\frac{1}{n}\sum_{1}^{n}E\left ( X_i \right ) {} \right |< \varepsilon \right ) =1 nlimP(n11nXin11nE(Xi)<ε)=1
说明:若随机变量序列 X 1 X_1 X1, X 2 X_2 X2,…, X n X_n Xn,…的数学期望和方差存在,且方差一致有上界,则经过算数平均后的到的随机变量 X ˉ \bar X Xˉ= 1 n \frac{1}{n} n1 ∑ i = 0 n \sum_{i=0}^n i=0n X i X_i Xi,当n充分大时,它的值将比较紧密地聚集在他的数学期望E( X ˉ \bar X Xˉ)的附近。
2.2伯努利定理
在独立试验序列中,设时间A的概率P(1)=p,则对于任意的正数 ε \varepsilon ε,当试验的次数 n → + ∞ {n \to +\infty} n+时,有
lim ⁡ n → ∞ P ( ∣ f n ( A ) − p ∣ < ε ) = 1 \lim_{n \to \infty} P\left ( \left | f_n\left ( A \right )-p \right | <\varepsilon \right ) =1 nlimP(fn(A)p<ε)=1
其中, f n f_n fn(A)是事件A在n次试验中发生的频率。
说明:当试验在相同的条件下重复进行很多次时,随机时间A的频率 f n f_n fn(A)将稳定在时间A的概率P(A)附近。
小概率事件的实际不可能性原理是指,概率很小的随机事件在个别试验中实际上是不可能发生的。

中心极限定理论证的是“大量对立随机变量的和的极限分布是正态的”一系列定理。
[林德伯格(Linderberg)——列维(Levy)中心极限定理]
设随机变量 X 1 , X 2 , . . . , X n , X_{1},X_{2},...,X_{n}, X1,X2,...,Xn,…相互独立,服从相同的分布,且 E ( X i ) = μ , D ( X i ) = σ 2 > 0 , i = 1 , 2 , . . . n , . . . ; E\left ( X_i \right )=\mu ,D\left ( X_i \right ) = \sigma ^2> 0, i=1,2,...n,...; E(Xi)=μ,D(Xi)=σ2>0,i=1,2,...n,...;
则对于任何实数x,有
lim ⁡ x → ∞ P ( ∑ 1 n X i − n μ n σ ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \lim_{x \to \infty} P\left ( \frac{\sum_{1}^{n}X_i-n\mu }{\sqrt{n}\sigma }\le x \right ) =\frac{1}{\sqrt{2\pi } } \int_{- \infty }^{x}e^{-\frac{t^2}{2} } dt xlimP(n σ1nXinμx)=2π 1xe2t2dt
说明:当n充分大时,独立同分布的随机变量 X 1 , X 2 , . . . , X n , X_{1},X_{2},...,X_{n}, X1,X2,...,Xn,的和 Y n = ∑ 1 n X i Y_n=\sum_{1}^{n}X_i Yn=1nXi将近似地服从正态分布 N ( n μ , n σ 2 ) N(n\mu ,n\sigma^2 ) N(nμ,nσ2)
[德莫佛(De Moivre)——拉普拉斯(Laplace)中心极限定理]
设在独立试验序列中,事件A的概率 P ( A ) = p ( 0 < p < 1 ) P\left ( A \right ) =p\left ( 0<p<1 \right ) P(A)=p(0<p<1),随机变量Yn表示A在n次实验中发生的次数,对于任何实数x,有
lim ⁡ x → ∞ P ( Y n − n p n p ( 1 − p ) ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \lim_{x \to \infty} P\left ( \frac{Y_n-np}{\sqrt{np(1-p)} }\le x \right ) =\frac{1}{\sqrt{2\pi } }\int_{-\infty }^{x}e^{-\frac{t^2}{2} }dt xlimP(np(1p) Ynnpx)=2π 1xe2t2dt
说明:当n充分大时,服从二项分布B(n,p)的随机变量Yn将近似地服从正态分布 N ( n p , n p ( 1 − p ) ) N\left ( np,np(1-p) \right ) N(np,np(1p))
中心极限定理的理论应用
[例题]某电站供应10,000户居民用电,设在高峰时每户用电的概率为0.8,且各户用电量多少时相互独立的。求:
(1)同一时刻有8100户以上用电的概率。
(2)若每户用电功率为100W,则电站至少需要多少电功率才能保证以0.975的概率供应居民用电。(求分位点)
[解答]
(1)Yn表示10,000户中在同一时刻用电的户数,则 Y n ∼ ( 10000 , 0.8 ) Y_{n}\sim (10000,0.8) Yn(10000,0.8),于是,np=10000*0.8=8000;
n p ∗ ( 1 − p ) = 10000 × 0.8 × 0.2 = 40 \sqrt{np*\left ( 1-p \right ) } =\sqrt{10000\times 0.8\times 0.2} =40 np(1p) =10000×0.8×0.2 =40
所以求概率为
P ( 8100 ≤ Y n ≤ 10000 ) = P ( 2.5 ≤ Y n − n p n p ( 1 − p ) ≤ 50 ) ≈ Φ ( 50 ) − Φ ( 2.5 ) = 0.00622 P\left ( 8100\le Y_n\le 10000 \right ) =P\left (2.5\le \frac{Y_n-np}{\sqrt{np\left ( 1-p \right )} }\le 50 \right ) \approx \Phi \left ( 50 \right )- \Phi \left ( 2.5 \right ) =0.0062 2 P(8100Yn10000)=P(2.5np(1p) Ynnp50)Φ(50)Φ(2.5)=0.00622
标准正态分布的图如下:
在这里插入图片描述
(2)设电站供电功率为QW,则按题意有
P ( 100 Y n ≤ Q ) = P ( Y n ≤ Q 100 ) = P ( Y n − n p n p ( 1 − P ) ≤ Q / 100 − 8000 40 ) ≈ Φ ( Q / 100 − 8000 40 ) = 0.975 P\left ( 100Y_n\le Q \right ) = P\left ( Y_n\le \frac{Q}{100} \right ) =P\left ( \frac{Y_n-np}{\sqrt{np\left ( 1-P \right )} } \le \frac{Q/100-8000}{40} \right ) \approx \Phi\left ( \frac{Q/100-8000}{40} \right ) =0.975 P(100YnQ)=P(Yn100Q)=P(np(1P) Ynnp40Q/1008000)Φ(40Q/1008000)=0.975
解得Q=807840W
电站供电功率不少于707.84KW
总结:多个独立服从二项分布B(n,p)的随机变量Yn将近似地服从正态分布 N ( n p , n p ( 1 − p ) ) N\left ( np,np(1-p) \right ) N(np,np(1p))

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大数定理中心极限定理是概率论中的两个重要定理,它们都是关于随机变量序列的极限行为的定理大数定理是指,对于一组独立同分布的随机变量,它们的算术平均值在概率意义下收敛于它们的期望值。也就是说,当样本数量足够大时,样本的平均值会趋近于总体的平均值。这个定理在统计学中有着广泛的应用,例如在抽样调查中,我们可以通过对样本进行统计分析来推断总体的特征中心极限定理是指,对于一组独立同分布的随机变量,它们的和在样本数量足够大时,近似服从于正态分布。也就是说,当我们对一个随机事件进行多次独立实验并将结果求和时,这个和的分布会趋近于正态分布。这个定理在统计学中也有着广泛的应用,例如在抽样调查中,我们可以通过对样本进行统计分析来推断总体的特征。 下面是一个演示中心极限定理的例子: 假设我们有一个硬币,正反面出现的概率都是50%。我们进行1000次独立实验,每次实验记录正面朝上的次数。我们将这1000次实验的结果求和,得到一个随机变量X。根据中心极限定理,当样本数量足够大时,X的分布会趋近于正态分布。我们可以通过Python代码来演示这个过程: ```python import random import matplotlib.pyplot as plt # 进行1000次实验,每次实验记录正面朝上的次数 results = [] for i in range(1000): result = sum([random.randint(0, 1) for _ in range(10)]) results.append(result) # 绘制结果的直方图 plt.hist(results, bins=range(11)) plt.show() ``` 通过运行上述代码,我们可以看到,当样本数量足够大时,结果的分布会趋近于正态分布。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值