概率论与数理统计基础(一):随机事件、概率与随机变量的期望、方差、切比雪夫不等式

目录

随机事件与概率

1.充要条件;      2.条件概率:   3. 全概率公式      4.贝叶斯公式

随机变量及其分布

1. 随机变量        2. 分布函数的三个基本性质:   3. 概率分布列:  

4. 数学期望:        5 期望的数学性质:           6. 方差:

7  期望的数学性质:      8  标准差                9 切比雪夫不等式【chebyshev's theorem】

10 随机变量的标准化          11 期望的另外两个性质:


随机事件与概率

1.充要条件

A的充要条件是B,则充分性是:B\Rightarrow A;     必要性是:A\Rightarrow B

2.条件概率:

设A,B是两个事件,若P(B) > 0 ,则称P(A|B)=\frac{P(AB)}{P(B)} 为“在事件B发生的前提下,事件A发生的概率"

3. 全概率公式

B_{1},B_{2},...B_{n}, 互不相容,且  \bigcup_{i=1}^{n}B_{i} =\Omega,如果 P(B_{i}) > 0\, ,i=1,2,....,n ,则对任意事件A有P(A)=\sum_{i=1}^{n}P(B_{i})P\left ( A|B_{i} \right ).

4.贝叶斯公式

B_{1},B_{2},...B_{n}, 互不相容,且  \bigcup_{i=1}^{n}B_{i} =\Omega,如果 P\left ( A \right )> 0,\: P(B_{i}) > 0\, ,i=1,2,....,n,则

P(B_{i}|A)=\frac{P(B_{i})P\left ( A|B_{i} \right )}{\sum_{j=1}^{n}P(B_{j})P\left ( A|B_{j} \right )}\: \: i=1,2,...,n

其中P(B_{i}) 为B_{i} 的先验概率,P(B_{i}|A) 为B_{i} 的后验概率,表示在“事件A发生”这个新信息后,对B_{i} 的概率作出的修正。

 

随机变量及其分布

1. 随机变量

  • 离散型:仅取有限个或可列个值,
  • 连续型:取值充满某个区间(a,b)其中a 可取 +\infty ,b可取-\infty

2. 分布函数的三个基本性质:

单调性,有界性,右连续性

3. 概率分布列:

两个基本性质:1)非负性,2)正则性 : \sum_{i=1}^{+\infty }p\left ( x_{i} \right )=1  

离散型:p_{i}=p\left ( x_{i} \right )=p\left ( X=x_{i} \right ),\: i=1,2,..,n,..

概率密度函数

两个基本性质:1)非负性,2)正则性 :\int_{-\infty }^{+\infty }p\left ( x \right ) \mathrm{d}x=1

    零概率(概率为0)的事件不一定是不可能事件,因为连续变量的概率就在具体的某个点都为零。

       连续型的分布函数F(x)是(-\infty+\infty)上的连续函数,(除可能在有限个点或可列个点上不可导以外)与概率密度函数p(x)的关系:F{}'\left ( x \right )=p\left ( x \right ) 

P\left ( x\leq a \right )=F\left ( a \right )\:; \: P\left ( x< a \right )=F\left ( a-0 \right ) \: ;\: P\left ( x > a \right )=1-F\left ( a\right ) \: ;\:

P\left ( x= a \right )=F\left ( a \right )-F\left ( a-0 \right )\:\: \: \: ; \: P\left ( x \geq a \right )=1-F\left ( a-0 \right ) \: \: \: ;\: P\left ( \left | x| < a \right )=F\left ( a-0\right )- F\left ( -a \right )\: ;\:

4. 数学期望:

对于离散型随机变量:E\left ( X \right )=\sum _{i}x_{i}p\left ( x_{i} \right )

对于连续型随机变量:E\left ( X \right )=\int _{-\infty }^{+\infty }xp\left ( x \right )\mathr{d}x

    期望是分布的位置特征,方差是分布的离散特征/散步特征。

5 期望的数学性质:

假定以下所涉及的数学期望与方差均存在:

  • X的某一函数g \left ( X \right ) 的数学期望为:

【X离散时】:E\left [g \left ( X \right ) \right ] =\sum _{i}\left g (x_{i} )\right p\left ( x_{i} \right )

【X连续】:E\left [g \left ( X \right ) \right ] = \int_{-\infty }^{+\infty }g\left ( x \right )p\left ( x \right )\mathr{d}x} 

  • 若c是常数,则 E\left ( c \right )=c
  • 对任意常数a,有  E\left ( ax \right )=aE\left ( x \right )
  • 对任意的两个函数g_{1}\left ( x \right ) 和  g_{2}\left ( x \right ) ,有E\left [g_{1}\left ( x \right )\pm g_{2}\left ( x \right ) \right ] =E\left [ g_{1}\left ( x \right ) \right ]\pm E\left [ g_{2}\left ( x \right ) \right ]

6. 方差:

随机变量X对其期望E\left ( X \right ) 的偏差平方的数学期望,是分布的散布特征

Var\left ( X \right )=E\left [ X-E\left ( X \right ) \right ]^{2} =E\left ( X^{2} \right )-\left [ E\left ( X \right ) \right ]^{2}

7  方差的数学性质:

假定以下所涉及的方差均存在: 

  • 若c是常数,则 Var\left ( c \right )=0
  • 对任意常数a,b,有  Var\left ( aX+b\right )=a^{2}Var\left ( x \right )
  • 若随机变量X的方差存在,则Var\left ( X\right )=0 的充要条件是,X几乎处处为某个常数a, 即P\left ( X=a \right )=1

8  标准差 

方差的正平方根\sigma \left ( X \right )=\sigma _{x} =\sqrt{Var\left ( X \right )} 即为标准差;

9 切比雪夫不等式【chebyshev's theorem】

 设X的数学期望与方差都存在,则对任意常数\epsilon > 0 ,有

P\left [ |X-E(X)| \geqslant \epsilon \right ] \leqslant \frac{Var(X)}{\epsilon ^{2}}   或者 P\left [ |X-E(X)| < \epsilon \right ]\geq 1- \frac{Var(X)}{\epsilon ^{2}}

切比雪夫不等式 给出了随机变量取值的大偏差(指事件|X-E(X)| \geqslant \epsilon )发生的概率的上限,该 上限与分布的方差成正比。

10 随机变量的标准化

对任意随机变量X,如果X的数学期望与方差存在,则称X^{\ast} = \frac{X-E(X)}{\sqrt{Var(X)}}  为X的标准化随机变量,此时有

E\left ( X^{\ast} \right )=0 \: ;\: \: Var\left ( X^{\ast} \right ) =1 

11 期望的另外两个性质:

  • 设随机变量X的分布函数为F\left ( x \right ) ,且E\left ( X \right ) 存在,则E\left ( X \right )=\int_{0}^{+\infty }\left [ 1-F\left ( x \right ) \right ]\mathr{d}x -\int_{-\infty }^{0 }F\left ( x \right ) \mathr{d}x 
  • 设g(x)为随机变量X取值的集合上的非负不减函数,且E\left ( g\left ( X \right ) \right ) 存在,则对任意的\epsilon > 0 有P\left ( X> \epsilon \right ) \leqslant \frac{E\left ( g\left ( X \right ) \right )}{g\left ( \epsilon \right )}

 

参考资料:

概率论与数理统计教程-茆诗松-第二版 ;习题与解答

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值