UA MATH567 高维统计I 概率不等式10 Bernstein不等式

本文介绍了高维统计中的Bernstein不等式,包括多个版本的表述,适用于零均值独立亚指数随机变量。通过Markov不等式和亚指数性质推导证明了该不等式,并探讨了其在线性组合和样本均值情况下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA MATH567 高维统计I 概率不等式10 Bernstein不等式

我们在介绍亚高斯分布后介绍了适用于亚高斯分布的推广的Hoeffding不等式,对于亚指数分布,我们可以得到类似的不等式。因为亚指数分布相对更具有一般性,因此亚指数分布的这个概率不等式是一个适用性比较广的不等式。

Bernstein不等式 版本1 假设 { X i } i = 1 N \{X_i\}_{i=1}^N { Xi}i=1N是一列零均值独立亚指数随机变量, ∀ t > 0 \forall t>0 t>0, K = max ⁡ 1 ≤ i ≤ N ∥ X i ∥ ψ 1 K=\max_{1\le i \le N}\left\| X_i\right\|_{\psi_1} K=max1iNXiψ1
P ( ∣ ∑ i = 1 N X i ∣ ≥ t ) ≤ 2 exp ⁡ ( − c min ⁡ ( t K , t 2 ∑ i = 1 N ∥ X i ∥ ψ 1 2 ) ) P\left( \left| \sum_{i=1}^NX_i \right| \ge t\right) \le 2 \exp \left( -c \min \left( \frac{t}{K},\frac{t^2}{\sum_{i=1}^N \left\|X_i \right\|_{\psi_1}^2} \right) \right) P(i=1NXit)2exp(cmin(Kt,i=1NXiψ12t2))

其中 c c c是一个常数。

证明
我们先用Markov不等式讨论 P ( ∑ i = 1 N X i ≥ t ) P(\sum_{i=1}^NX_i \ge t) P(i=1NXit),
P ( ∑ i = 1 N X i ≥ t ) = P ( e λ ∑ i = 1 N X i ≥ e λ t ) ≤ e − λ t E e λ ∑ i = 1 N X i = e − λ t ∏ i = 1 N E e λ X i P(\sum_{i=1}^NX_i \ge t) = P(e^{\lambda\sum_{i=1}^NX_i} \ge e^{\lambda t}) \\\le e^{-\lambda t}Ee^{\lambda\sum_{i=1}^NX_i} = e^{-\lambda t}\prod_{i=1}^N Ee^{\lambda X_i} P(i=1NXit)=P(eλi=1NXieλt)eλtEeλi=1NXi=eλti=1NEeλXi

根据亚指数性5, K 5 = c ∥ X

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值