UA MATH567 高维统计I 概率不等式10 Bernstein不等式
我们在介绍亚高斯分布后介绍了适用于亚高斯分布的推广的Hoeffding不等式,对于亚指数分布,我们可以得到类似的不等式。因为亚指数分布相对更具有一般性,因此亚指数分布的这个概率不等式是一个适用性比较广的不等式。
Bernstein不等式 版本1 假设 { X i } i = 1 N \{X_i\}_{i=1}^N {
Xi}i=1N是一列零均值独立亚指数随机变量, ∀ t > 0 \forall t>0 ∀t>0, K = max 1 ≤ i ≤ N ∥ X i ∥ ψ 1 K=\max_{1\le i \le N}\left\| X_i\right\|_{\psi_1} K=max1≤i≤N∥Xi∥ψ1
P ( ∣ ∑ i = 1 N X i ∣ ≥ t ) ≤ 2 exp ( − c min ( t K , t 2 ∑ i = 1 N ∥ X i ∥ ψ 1 2 ) ) P\left( \left| \sum_{i=1}^NX_i \right| \ge t\right) \le 2 \exp \left( -c \min \left( \frac{t}{K},\frac{t^2}{\sum_{i=1}^N \left\|X_i \right\|_{\psi_1}^2} \right) \right) P(∣∣∣∣∣i=1∑NXi∣∣∣∣∣≥t)≤2exp(−cmin(Kt,∑i=1N∥Xi∥ψ12t2))
其中 c c c是一个常数。
证明
我们先用Markov不等式讨论 P ( ∑ i = 1 N X i ≥ t ) P(\sum_{i=1}^NX_i \ge t) P(∑i=1NXi≥t),
P ( ∑ i = 1 N X i ≥ t ) = P ( e λ ∑ i = 1 N X i ≥ e λ t ) ≤ e − λ t E e λ ∑ i = 1 N X i = e − λ t ∏ i = 1 N E e λ X i P(\sum_{i=1}^NX_i \ge t) = P(e^{\lambda\sum_{i=1}^NX_i} \ge e^{\lambda t}) \\\le e^{-\lambda t}Ee^{\lambda\sum_{i=1}^NX_i} = e^{-\lambda t}\prod_{i=1}^N Ee^{\lambda X_i} P(i=1∑NXi≥t)=P(eλ∑i=1NXi≥eλt)≤e−λtEeλ∑i=1NXi=e−λti=1∏NEeλXi
根据亚指数性5, K 5 = c ∥ X