鲁棒优化入门(二)——基于matlab+yalmip求解鲁棒优化问题

       上一篇博客简单介绍了可以用来求解鲁棒优化的两个工具箱:

鲁棒优化入门(一)——工具箱Xprog和RSOME的安装与使用

        其实大家可能没有想过,matlab+yalmip工具箱也可以处理一些简单的鲁棒优化问题,上官方文档:Robust optimization - YALMIP

        这里就和大家一起学习一下使用yalmip+cplex求解鲁棒优化问题的方法。

一、yalmip求解鲁棒优化

        鲁棒优化问题可以表示为如下的一般形式:

式中,x表示决策变量,w表示不确定变量。这个表达式的含义就是在最恶劣的情况下(w的取值使目标函数最大),求出满足约束条件,并且能使目标函数最小的决策变量x。

        但yalmip工具箱求解鲁棒优化问题时还是有一定局限性的,并不能处理任意形式的不确定集下的鲁棒优化问题,一般来说,当鲁棒优化问题的不确定集合为箱型不确定集、椭球不确定集以及多面体不确定集时,都可以用yalmip工具箱求解(具体细节可参考官方文档)。

二、示例代码

1.实例1:线性规划问题

        考虑一个简单线性规划问题:

        这个问题中不确定变量w仅存在于约束条件中,目标函数中不包含不确定变量。显然,当w=0.5时是最恶劣的情况,此时f(x)的最大值为0.5。采用yalmip编程验证一下:

sdpvar x w                              % 定义变量
C = [x+w <= 1];                         % 约束条件
W = [-0.5 <= w <= 0.5, uncertain(w)];   % 不确定集
objective = -x;                         % 目标函数
sol = optimize(C + W,objective);        % 求解模型
obj=-value(objective);                  % 目标函数取值
x=value(x);                             % 决策变量x取值

        对于不确定变量w,需要用uncertain()函数将其规定为不确定变量。另外,还可以先将鲁棒优化存为yalmip模型,然后再进行求解:

[Frobust,robust_objective] = robustify(C + W,objective);    % 导出鲁棒优化模型
sol = optimize(Frobust,robust_objective);                   % 求解鲁棒优化模型

运行结果:

         显然,和我们一眼看出的结果是一样的。

        对于决策变量为整数或含有逻辑约束的鲁棒优化问题,yalmip同样可以求解,例如:

         matlab代码为:

intvar x
sdpvar w                                                    % 定义变量
C = [x+w <= 2];                                             % 约束条件
W = [-0.5 <= w <= 0.5, uncertain(w)];                       % 不确定集
objective = -x;                                             % 目标函数
sol = optimize(C + W,objective);                            % 求解模型
obj=-value(objective);                                      % 目标函数取值
x=value(x);                                                 % 决策变量x取值

        运行结果:

2.实例2:含椭球不确定集的鲁棒优化问题

        考虑一个含有椭球不确定集的鲁棒优化问题:

         这个问题中不确定变量w仅存在于约束条件中,目标函数中不包含不确定变量。假设n=2,也不难看出,当w1=w2=0.5时,属于最恶劣的场景,此时f(x)最大值为0。编程验证一下:

sdpvar x w(2,1)                                             % 定义变量
C = [x+sum(w) <= 1];                                        % 约束条件
W = [norm(w) <= 1/sqrt(2), uncertain(w)];                   % 不确定集
objective = -x;                                             % 目标函数
sol = optimize(C + W,objective);                            % 求解模型
obj=-value(objective);                                      % 目标函数取值
x=value(x);                                                 % 决策变量x取值

        运行结果:

        小伙伴们可能有点奇怪,说好的最优值是零呢?怎么是一个负数?其实,我们应该知道matlab的计算精度是有限的,eps表示MATLAB默认的最小浮点数精度(默认是eps(1)):

         所以这个结果应该就是计算误差。

3.实例3:含不确定性的平方和(SOS,Sum of squares)规划问题

        考虑如下的SOS规划问题,其中a为整数变量,取值范围[3,5]

         这玩意就没法直接看出最优解了,直接上代码:

intvar a
sdpvar x y t u                  % 定义决策变量
p = a*x^4+y^4+u*x*y+1;          % 多项式表示
F = [uncertain(u), -1<=u<=1];   % 不确定集
F = [F, a>=3, a<=5];            % 约束条件a∈[3,5]
F = [F, sos(p-t)];              % 多项式约束
solvesos(F, -t)                 % 求解模型
A=value(a);                     % 决策变量a的取值 
T=value(t);                     % 目标函数t的取值

运行结果:

        可以看出,当a=5时,目标函数t取得最大值,为0.9437。

        上面三个例子都是yalmip官方文档中的示例,下面来看一个实际问题:

4.实例4:股票投资问题

        假设一共有150种股票可供选择,第i个股票的不确定收益用\widehat{p}_i表示,其取值满足约束条件:\widehat{p}_i\in [p_i-\delta _i,p_i+\delta _i],其中,p_i表示股票i的期望收益,\delta_i表示股票i的偏差,不确定集可以用1范数和无穷范数表示为:

         该投资组合问题的鲁棒优化模型可以表示为:

         在本例中,假设Γ=5,参数pi和σi满足如下公式:

         求解该问题的matlab代码如下:

n  = 150;                                               % 股票的数量 
p  = 1.15+ 0.05/150*(1:n)';                             % 期望的收益
sigma = 0.05/450*sqrt(2*n*(n+1)*(1:n)');                % 收益的偏差
gamma=5;                                                % 不确定预算
z=sdpvar(n,1);                                          % 不确定变量z
x=sdpvar(n,1);                                          % 决策变量x
C=[sum(x)==1,x>0];                                      % x的约束条件
Z=[norm(z,Inf)<=1,norm(z,1)<=gamma,uncertain(z)];       % 不确定集
objective = -(p + sigma.*z)'*x;                         % 目标函数
sol = optimize(C+Z,objective);                          % 求解模型
x=value(x);                                             % 决策变量x取值
plot(x)                                                 % 画出图像

        运行结果:

        和RSOME工具箱的求解结果一致。

  • 19
    点赞
  • 107
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 原创代码是指在开发过程中自行设计和编写的代码,而非借用他人代码的部分或全部内容。完美复现是指在复现过程中,能够完全还原原始代码的功能和效果。微电网两阶段鲁棒优化是指运用鲁棒优化方法对微电网进行优化设计的过程,将不确定性因素考虑在内,以提高系统的鲁棒性和稳定性。 基于MATLABYALMIP和CPLEX实现的微电网两阶段鲁棒优化,可以采用以下步骤: 1. 首先,需要在MATLAB中安装并配置好YALMIP和CPLEX工具箱。 2. 接下来,根据微电网的具体特点和需求,设计微电网两阶段鲁棒优化模型,并编写MATLAB代码来表达该模型。 3. 在编写代码时,可以使用YALMIP来定义优化问题的变量、约束条件和目标函数。YALMIP提供了一种方便的方式来描述和求解优化问题。 4. 在定义完优化问题后,可以使用CPLEX求解引擎来求解该优化问题。CPLEX是一个高效的求解器,可以处理大规模的优化问题。 5. 在代码中,可以使用MATLAB的相关函数和工具箱来完成对微电网模型的建模、数据处理和结果分析。 通过以上步骤,可以实现基于MATLABYALMIP和CPLEX的微电网两阶段鲁棒优化。与传统的优化方法相比,鲁棒优化考虑到了不确定性因素,可以使得系统更具鲁棒性和稳定性,提高了系统的可靠性和性能。 总结起来,基于MATLABYALMIP和CPLEX实现的微电网两阶段鲁棒优化方案,可以通过自行编写和设计的原创代码来完美复现原始模型,并通过鲁棒优化方法来改善微电网的性能和鲁棒性。这种方法不仅可以提高微电网系统的可靠性和稳定性,还可以为微电网的实际应用提供一种有效的优化设计手段。 ### 回答2: 微电网是一种由多种分布式能源资源组成的小型电力系统,具有自主运行和可靠供电的特点。为了提高微电网的经济性和能源利用效率,我们可以对其进行优化调度。这里,我将介绍基于MATLABYALMIP和CPLEX的两阶段鲁棒优化方法。 首先,在问题数学建模方面,我们需要考虑微电网的各种能源资源和负荷需求之间的关系。我们可以使用线性约束和非线性约束来描述微电网的运行条件和限制。例如,我们可以定义发电机的燃料成本和发电能力之间的关系,以及存储系统的充放电速率和能量容量之间的关系。 然后,我们可以使用MATLABYALMIP插件来实现数学建模。YALMIP是一个用于优化问题建模和求解的工具箱,它提供了方便的高级接口,能够将问题转化为标准的优化模型。我们可以使用YALMIP定义变量、目标函数和约束,将问题转化为线性规划或混合整数线性规划问题。 最后,我们可以使用CPLEX求解器来求解优化问题。CPLEX是一个强大的数学优化求解器,能够高效地求解线性规划和混合整数线性规划问题。我们可以将YALMIP生成的优化模型输入到CPLEX中,通过求解器获得最优的优化调度方案。 通过使用MATLABYALMIP和CPLEX,我们可以实现微电网的两阶段鲁棒优化。这种方法可以在保证微电网可靠性和运行约束条件的前提下,最小化成本并提高能源利用效率。同时,由于YALMIP和CPLEX具有良好的用户界面和求解性能,我们可以方便地实现和调试优化算法,进一步提高优化算法的可行性和效率。 总之,基于MATLABYALMIP和CPLEX的两阶段鲁棒优化方法为微电网的经济性和能源利用效率提供了有效的解决方案。这种方法不仅能够实现原创的代码和完美的复现,还能够为微电网的可持续发展和智能化管理提供支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

配电网和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值