概要
随着大语言模型的发展,提示词工程(Prompt Engineering)成为了利用这些模型的关键技术之一。提示词工程是指设计特定的文本输入,以引导模型产生预期的回答或行为。本文将介绍如何使用LangChain框架结合ChatOpenAI来实现这一目标,并通过几个具体的例子来演示其应用。
初始化大模型
在开始之前,我们需要使用ollama初始化一个大模型,这个客户端将用来发送请求,并接收响应。
from langchain_community.llms import Ollama
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# 创建一个Ollama客户端并指定要使用的模型
ollama_client = Ollama(model="qwen:7b", max_token=2048, do_sample=True, temperature=0.7, top_p=1.0)
提示:这里temperature参数决定了生成内容的随机性,值越大,生成的内容越具有多样性。
基本的提示词调用
让我们通过一个简单的例子来看看如何使用ChatOpenAI来响应一个基本的数学问题:
result = ollama_client.invoke("请问2只兔子有多少条腿?")
print(result)
使用LangChain的提示词模板
LangChain提供了一个便捷的方式来管理提示词模板。我们可以定义一个模板,然后使用该模板来生成特定的提示词。
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import StrOutputParser
# 定义一个提示词模板
prompt = ChatPromptTemplate.from_template("请根据下面的主题写一篇小红书营销的短文: {topic}")
output_parser = StrOutputParser()
# 创建一个请求链
chain = prompt | chat | output_parser
# 调用请求链
result = chain.invoke({"topic": "康师傅绿茶"})
print(result)
例子二:生成诗歌
from langchain.prompts import PromptTemplate
# 定义一个诗歌生成的提示词模板
prompt_template = PromptTemplate.from_template("给我讲一个关于{content}的{adjective}诗歌")
# 使用模板生成一个具体的提示词
formatted_prompt = prompt_template.format(adjective="小年轻风格", content="减肥")
print(formatted_prompt)
# 创建请求链并调用
chain = prompt_template | chat | output_parser
result = chain.invoke({"adjective":"小年轻风格", "content":"减肥"})
print(result)
小结
通过上述例子,我们可以看到LangChain框架和LLM结合使用时的强大能力。无论是简单的数学问题解答,还是复杂的多轮对话模拟,都可以通过合理的设计提示词模板来实现。随着提示词工程的不断进步,未来将会有更多创新性的应用等待我们去探索。