使用LangChain进行提示词工程

概要

随着大语言模型的发展,提示词工程(Prompt Engineering)成为了利用这些模型的关键技术之一。提示词工程是指设计特定的文本输入,以引导模型产生预期的回答或行为。本文将介绍如何使用LangChain框架结合ChatOpenAI来实现这一目标,并通过几个具体的例子来演示其应用。

初始化大模型

在开始之前,我们需要使用ollama初始化一个大模型,这个客户端将用来发送请求,并接收响应。

from langchain_community.llms import Ollama
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

# 创建一个Ollama客户端并指定要使用的模型
ollama_client =  Ollama(model="qwen:7b", max_token=2048, do_sample=True, temperature=0.7, top_p=1.0)

提示:这里temperature参数决定了生成内容的随机性,值越大,生成的内容越具有多样性。

基本的提示词调用
让我们通过一个简单的例子来看看如何使用ChatOpenAI来响应一个基本的数学问题:

result = ollama_client.invoke("请问2只兔子有多少条腿?")
print(result)

使用LangChain的提示词模板
LangChain提供了一个便捷的方式来管理提示词模板。我们可以定义一个模板,然后使用该模板来生成特定的提示词。

from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import StrOutputParser

# 定义一个提示词模板
prompt = ChatPromptTemplate.from_template("请根据下面的主题写一篇小红书营销的短文: {topic}")
output_parser = StrOutputParser()

# 创建一个请求链
chain = prompt | chat | output_parser

# 调用请求链
result = chain.invoke({"topic": "康师傅绿茶"})
print(result)

例子二:生成诗歌

from langchain.prompts import PromptTemplate

# 定义一个诗歌生成的提示词模板
prompt_template = PromptTemplate.from_template("给我讲一个关于{content}的{adjective}诗歌")

# 使用模板生成一个具体的提示词
formatted_prompt = prompt_template.format(adjective="小年轻风格", content="减肥")
print(formatted_prompt)

# 创建请求链并调用
chain = prompt_template | chat | output_parser
result = chain.invoke({"adjective":"小年轻风格", "content":"减肥"})
print(result)

小结

通过上述例子,我们可以看到LangChain框架和LLM结合使用时的强大能力。无论是简单的数学问题解答,还是复杂的多轮对话模拟,都可以通过合理的设计提示词模板来实现。随着提示词工程的不断进步,未来将会有更多创新性的应用等待我们去探索。

参考资源链接:[Python Langchain:从入门到高级实战,提升GPT应用工程能力](https://wenku.csdn.net/doc/2pmfvx6eby?utm_source=wenku_answer2doc_content) 要利用Langchain库在Python中实现提示工程,并结合GPT-4进行参数优化以提升自然语言理解能力,你需要了解Langchain的高级特性以及如何在实践中应用这些特性来调整和优化模型参数。 首先,Langchain库提供了一套丰富的API,这些API可以帮助你设计和调整提示(prompts),从而引导GPT-4模型产生更准确和更符合特定需求的输出。在设计提示时,你可以使用Langchain的提示模板功能,结合上下文信息和具体的任务需求,创建出能够影响模型行为的指令。 其次,模型参数优化是一个迭代的过程,需要根据实际输出的效果来调整。Langchain允许你微调模型的温度(temperature)、最大令牌数(max_tokens)和其他超参数,以实现对生成文本的精细控制。你可以通过Langchain提供的接口来调整这些参数,观察不同设置对模型输出的影响。 以下是一个结合Langchain和GPT-4进行参数优化的示例代码: ```python from langchain import LangChain, PromptTemplate, GPT4 # 初始化LangChain和GPT-4模型 lc = LangChain(model=GPT4()) # 设计一个提示模板,结合上下文信息 prompt = PromptTemplate( template= 参考资源链接:[Python Langchain:从入门到高级实战,提升GPT应用工程能力](https://wenku.csdn.net/doc/2pmfvx6eby?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值