LMDeploy量化部署进阶实践

LMDeploy量化部署进阶实践

书生浦语官网:https://internlm.intern-ai.org.cn/

MindSearch(欢迎 Star):https://github.com/InternLM/MindSearch

笔记

1.配置LMDeploy的环境

搭建环境并且安装相关包

conda create -n lmdeploy  python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3
# 创建模型目录和软链接(节省资源空间)
mkdir /root/models
ln -s /root/share/new_models//Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models

/root/models中会看到我们用到的两个模型文件,

在这里插入图片描述

接下来我们使用LMDeploy来启动InternLM2.5-7B模型,在模型的config文件中,我们可以看到,模型的权重被存储为bfloat16格式,解释一下什么是bfoat16?对于70亿参数的模型,每个参数使用的是使用16位浮点数(2个Byte)表示,换算一下,模型权重大小约为70*10^9 parameters * 2 Bytes/para=14GB,所以我们运行该模型需要14G左右的显存。

接下来,我们使用LMDeploy验证启动模型文件,并且可以查看下InternStudio开发机提供的资源监控,记录下来,我们可以发现用30%A100 * 1和50%A100 * 1显存占用是渐进式增加的,LMDpeloy推理精度为bf16的7B模型权重需要占用14GB显存,lmdeploy默认设置cache-max-entry-count为0.8,即kv cache占用剩余显存的80%;

此时对于24GB的显卡,即30%A100,权重占用14GB显存,剩余显存24-14=10GB,因此kv cache占用10GB*0.8=8GB,加上原来的权重14GB,总共占用14+8=22GB

而对于40GB的显卡,即50%A100,权重占用14GB,剩余显存40-14=26GB,因此kv cache占用26GB*0.8=20.8GB,加上原来的权重14GB,总共占用34.8GB

实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于22GB34.8GB

conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat

在这里插入图片描述

显存资源监控的命令,大家应该都清楚,NVIDIA的卡是nvidia-smi,AMD

显卡的资源监控可安装redeontop工具(linux),sudo apt install radeontop,然后直接使用radeontop,对了lspci | grep -i vga无法实时监控显存使用,只是列出了VGA设备的信息,amdconfig --adapter=all --odgc这个就需要AMD卡的小伙伴自行验证下哈。

2. LMDeploy与InternLM2.5

接下里我们将InternLM2.5封装成API接口来让客户端访问。

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

命令解释:

  1. lmdeploy serve api_server:这个命令用于启动API服务器。
  2. /root/models/internlm2_5-7b-chat:这是模型的路径。
  3. --model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。
  4. --quant-policy 0:这个参数指定了量化策略。
  5. --server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。
  6. --server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。
  7. --tp 1:这个参数表示并行数量(GPU数量)。

然后就是本地做一下ssh转发就能啊直接在浏览器访问了,相信小伙伴了已经对ssh转发熟能生巧了,这里就不详细介绍了,也不会截过程图了,不过建议大家还是在本地设置下SSH公钥,节省你cv开发机密码的时间和可能cv错的细小可能。

# 48229是我自己开发及的端口,需要换成自己开发及端口
ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 48229
# 再开一个终端
conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333

这里就是开启终端后,直接本地访问我们启动的模型API服务

在这里插入图片描述

然后我们以Gradio网页形式连接API服务器,这里重新做一下ssh端口转发,注意这里保持第一个LMDeploy第一个启动的23333服务不要关闭,然后刚才我们不是新开启终端调本地API服务吗?我们直接输入exit,按两下Enter键退出即可,直接执行下面的命令。

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006
# 本地做ssh转发
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 48229

然后本地访问6006即可,

在这里插入图片描述

2.2 LMDeploy

随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化和 k/v cache两种策略。

2.2.1 设置最大kv cache缓存大小

kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。

还记得我们前面Interlm2.5-7b正常运行占用了23GB的显存,默认kv缓存设置为0.8,我们使用0.4启动下看看显存占用,减少了4GB左右的显存占用:

lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4

在这里插入图片描述

让我们计算一下4GB显存的减少缘何而来,

对于修改kv cache默认占用之前,即如之前LMdeploy启动所示直接启动模型的显存占用情况(23GB):

1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB

2、kv cache占用8GB:剩余显存24-14=10GB,kv cache默认占用80%,即10*0.8=8GB

3、其他项1GB

23GB=权重占用14GB+kv cache占用8GB+其它项1GB

对于修改kv cache占用之后的显存占用情况(19GB):

1、与上述声明一致,在 BF16 精度下,7B模型权重占用14GB

2、kv cache占用4GB:剩余显存24-14=10GB,kv cache修改为占用40%,即10*0.4=4GB

3、其他项1GB

19GB=权重占用14GB+kv cache占用4GB+其它项1GB

而此刻减少的4GB显存占用就是从10GB*0.8-10GB*0.4=4GB,这里计算得来。

2.2.2 设置在线 kv cache int4/int8 量化

自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policycache-max-entry-count参数。目前,LMDeploy 规定 qant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化

我们来验证下int4量化的显存占用

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

然后再新开的终端中输入如下命令

lmdeploy serve api_client http://localhost:23333

这里是输入问题后按两下Enter键确定,结束对话就是输入exit退出

在这里插入图片描述

可以看到显存占用约19GB左右,发现我们此时的占用和之前没有int4量化的占用,而是直接启动模型比较也是减少了4GB,和KV-cache设置为0.4占用的显存是一致的,都减少了4GB的显存占用。现在我们来分析下int4量化和kv-cache设置为0.4有什么区别?

由于都使用BF16精度下的internlm2.5-7B模型,故剩余显存均为10GB,且 cache-max-entry-count 均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即10GB*0.4=4GB。但quant-policy 设置为4时,意味着使用int4精度进行量化。因此,LMDeploy将会使用int4精度提前开辟4GB的kv cache。

相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16的四倍。但是我们在用量化的时候,也要注意模型的精度是否损失。

2.2.3 W4A16 模型量化和部署

模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。

  • W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
  • A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。

因此,W4A16的量化配置意味着:

  • 权重被量化为4位整数。
  • 激活保持为16位浮点数。

在最新的版本中,LMDeploy使用的是AWQ算法,能够实现模型的4bit权重量化。输入以下指令,执行量化工作。(本步骤耗时较长,请耐心等待)

lmdeploy lite auto_awq \
   /root/models/internlm2_5-7b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit

命令解释如下:

  1. lmdeploy lite auto_awq: lite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)。
  2. /root/models/internlm2_5-7b-chat: 模型文件的路径。
  3. --calib-dataset 'ptb': 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)。
  4. --calib-samples 128: 这指定了用于校准的样本数量—128个样本
  5. --calib-seqlen 2048: 这指定了校准过程中使用的序列长度—1024
  6. --w-bits 4: 这表示权重(weights)的位数将被量化为4位。
  7. --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果。

这里可能会出现一个error:ImportError: cannot import name 'StaticCache' from 'transformers.cache_utils,这个错误就是说当前的Transformers的xx方法里面没有StaticCache这个,我们需要自行去了解Transformers版本里面是否有这个用法,这里就不细说了,我们直接解决这个问题。

# 更换Transformers版本即可
pip install transformers==4.39.3

然后再执行上面的W4A16量化的指令,耐心等待即可:

在这里插入图片描述

在这里插入图片描述

推理结束后,在量化输出目录里面看到模型文件,我们通过du -sh *看到当前目录中显示所有子目录的大小,这里原始模型的大小是软链接的形式存在,所有显示大小为0,所以。

# 查看W4A16量化后模型信息
cd /root/models/
du -sh *
# 查看原始模型信息
cd /root/share/new_models/Shanghai_AI_Laboratory/
du -sh *

在这里插入图片描述

经过对比发现,我发现W4A16量化后的模型明显比原始模型内存占用小,只占用了4.9G,原始模型占用15G

接下来我们再来验证下显存占用大小,我们用LMDeploy启动我们量化后的模型并且查看占用显存大小,可以发现W4A16量化后的模型少了2G左右的大小显存,我们计算下这2G是怎么来的。

lmdeploy chat /root/models/internlm2_5-7b-chat-w4a16-4bit/ --model-format awq

在这里插入图片描述

对于W4A16量化之前,即如LMDeploy验证启动InterLM2.5-7B模型文件所示直接启动模型的显存占用情况(23GB):

1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB

2、kv cache占用8GB:剩余显存24-14=10GB,kv cache默认占用80%,即10*0.8=8GB

3、其他项1GB

23GB=权重占用14GB+kv cache占用8GB+其它项1GB

而对于W4A16量化之后的显存占用情况(20.9GB):

1、在 int4 精度下,7B模型权重占用3.5GB14/4=3.5GB

注释:

  • bfloat16是16位的浮点数格式,占用2字节(16位)的存储空间。int4是4位的整数格式,占用0.5字节(4位)的存储空间。因此,从bfloat16int4的转换理论上可以将模型权重的大小减少到原来的1/4,即7B个int4参数仅占用3.5GB的显存

2、kv cache占用16.4GB:剩余显存24-3.5=20.5GB,kv cache默认占用80%,即20.5*0.8=16.4GB

3、其他项1GB

20.9GB=权重占用3.5GB+kv cache占用16.4GB+其它项1GB

2.2.4 W4A16 量化+ KV cache+KV cache 量化

输入以下指令,让我们同时启用量化后的模型、设定kv cache占用和kv cache int4量化。

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

上面是后端服务,我们要验证的话再开一个终端用lmdeploy运行这个服务即可

lmdeploy serve api_client http://localhost:23333

同样的这是是输入问题后按两下Enter键确定,结束对话就是输入exit退出

我们可以查看下此时的显存

在这里插入图片描述

让我们来计算一下此刻的显存占用情况(13.5GB):

1、在 int4 精度下,7B模型权重占用3.5GB:14/4=3.5GB
2、kv cache占用16.4GB:剩余显存24-3.5=20.5GB,kv cache占用40%,即20.5*0.4=8.2GB
3、其他项1.8GB

故13.5GB=权重占用3.5GB+kv cache占用8.2GB+其它项1.8GB

3 LMDeploy与InternVL2

3.1 LMDeploy 量化部署InternVL2

这次实践采用InternVL2-26B进行演示,其实就根本来说作为一款VLM和上述的InternLM2.5在操作上并无本质区别,仅是多出了"图片输入"这一额外步骤,但作为量化部署进阶实践,选用InternVL2-26B目的是带领大家体验一下LMDeploy的量化部署可以做到何种程度。

# 进入创建的虚拟环境
conda activate lmdeploy

# 量化命令
lmdeploy lite auto_awq \
   /root/models/InternVL2-26B \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/InternVL2-26B-w4a16-4bit

# 启动量化后的模型
lmdeploy serve api_server \
    /root/models/InternVL2-26B-w4a16-4bit \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.1\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

# 再开启一个终端了LMDeploy打开端口为23333服务
conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333

在这里插入图片描述

在这里插入图片描述

量化步骤一如既往的有点长,中间会出现Token长度大于设置的序列长度的索引error,暂时可不用去管,一般是数据预处理的时候问题或是模型配置问题,但是我们启动的都是别人配好的文件,我是没权限改的,感兴趣的小伙伴建议去看看InternVL2-26B模型文件的配置文件和启动代码哈,量化技术后左侧/modes/会生成对应量化后的模型文件,所以建议我们先看看后面的内容。量化后的模型启动观测显存占用情况,

在这里插入图片描述

根据官方提供的Model Card,可以看到InternVL2 26B是由一个6B的ViT、一个100M的MLP以及一个19.86B的internlm组成的,

我们来计算一下使用A100 80GB直接启动模型的显存占用情况:
1、在 fp16 精度下,6BViT模型权重占用12GB:60×10^9 parameters×2 Bytes/parameter=12GB
2、在 fp16 精度下,19.86B≈20B的internlm模型权重占用40GB:200×10^9 parameters×2 Bytes/parameter=40GB
3、kv cache占用22.4GB:剩余显存80-12-40=28GB,kv cache默认占用80%,即28*0.8=22.4GB
4、其他项
故总占用=Vit权重占用12GB+internlm模型权重占用40GB+kv cache占用22.4GB+其他项≥74.4GB
对于使用30%A100*1(24GB显存容量)联合部署的显存情况(23.8GB):
1、在 fp16 精度下,6BViT模型权重占用12GB:60×10^9 parameters×2 Bytes/parameter=12GB (ViT使用精度为fp16的pytorch推理,量化只对internlm起效果)
2、在 int4 精度下,19.86B≈20B的internlm模型权重占用10GB:200×10^9 parameters×0.5 Bytes/parameter=10GB
3、kv cache占用0.2GB:剩余显存24-12-10=2GB,kv cache修改为占用10%,即2*0.1=0.2GB
4、其他项1.6GB
是故23.8GB=Vit权重占用12GB+internlm模型权重占用10GB+kv cache占用0.2GB+其他项1.6GB

如果此时推理图片,则会显示剩余显存不足,这是因为推理图片的时候pytorch会占用额外的激活显存,故有需要的小伙伴可以开启50%A100进行图片推理

在这里插入图片描述

3.2 LMDeploy API部署InternVL2

就是和前面部署InternLM2.5-7b-chat流程一样,这里就采用使用Gradio服务网页形式来展示。

# 启动量化后的InternVL2模型
lmdeploy serve api_server \
    /root/models/InternVL2-26B-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.1 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1
# 先把服务用Gradio工具展示
lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

# 然后我们本机cmd做一下ssh转发
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p <你的ssh端口号>

在这里插入图片描述

模型的理解和内容回答不够好,这还是取决于模型性能优化的问题,总的来说已经成功对话了。

4 LMDeploy之FastAPI与Function call

我们来完成最后一个小节的内容。就是Function call函数调用一次加法和乘法的操作。

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat-w4a16-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 4 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1
# 创建一个py文件
touch /root/internlm2_5.py

将下面代码内容复制到上面创建的internlm2_5.py

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI


# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)

# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id

# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)

# 打印出API的响应结果
print(response.choices[0].message.content)

接着我们执行这个文件,看看终端的效果

python /root/internlm2_5.py

在这里插入图片描述

4.2 Function call

最后完成一下这个函数调用的功能,我这里简单介绍,建议小伙伴们自由实现运算效果,多读读代码,就能理解了。这里提一点,上面我们LMDeploy反复启动原始模型,量化后的模型展示效果,有可能有同学没有关闭进程导致的error,这里就直接使用ps aux | grep lmdeploykill -9 xxxx解决一下哈,grep后面接的是服务名,kill -9 后面接的是进程ID,注意不要kill掉 auto的 LMDeploy进程哈

conda activate lmdeploy

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

创建一个执行函数调用的py文件

touch /root/internlm2_5_func.py
# 将下面内容复制到上面internlm2_5_func.py文件中
from openai import OpenAI


def add(a: int, b: int):
    return a + b


def mul(a: int, b: int):
    return a * b


tools = [{
    'type': 'function',
    'function': {
        'name': 'add',
        'description': 'Compute the sum of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}, {
    'type': 'function',
    'function': {
        'name': 'mul',
        'description': 'Calculate the product of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)

messages.append({
    'role': 'assistant',
    'content': response.choices[0].message.content
})
messages.append({
    'role': 'environment',
    'content': f'3+5={func1_out}',
    'name': 'plugin'
})
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)

# 直接运行
python /root/internlm2_5_func.py

在这里插入图片描述

这就是InternLM2.5将输入'Compute (3+5)*2'根据提供的function拆分成了"加"和"乘"两步,第一步调用function add实现加,再于第二步调用function mul实现乘,再最终输出结果16。

如果遇到一些typeerror的报错,其实就是代码没有检查一些tool_calls在响应中可能为None,再执行一遍文件即可,如遇到其他无法解决的问题,先看看traceback修改,也可以联系我,谢谢。

总结

这节是主要还是Internlm2.5和InternVL2的部署与量化实现的内容,操作简单,主要是我们可以使用lmde工具来量化模型,使其模型推理只需要较低的显存占用,保证在低配置下也能运行推理。感兴趣的同学可以自己深入了解下我们的LMDeploy量化参数以及相关代码的核心逻辑。

  • 14
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值