day2 AI面试刷题

1、为什么一些场景中使用余弦相似度而不是欧式距离?

余弦相似度取值为[-1, 1],而余弦距离取值为1-余弦相似度,为[0, 2]。余弦相似度保持在高维为1,正交时为0,相反时为-1。欧氏距离衡量空间点的直线距离,而余弦相似度衡量点在空间方向上的差异。

参考答案:
假设有 A A A B B B 两个向量,其余弦相似度定义为 cos ⁡ ( A , B ) = A ⋅ B ∣ ∣ A ∣ ∣ 2 ∣ ∣ B ∣ ∣ 2 \cos(A, B)=\frac{A\cdot B}{||A||_2||B||_2} cos(A,B)=A2B2AB,即两个向量夹角的余弦。它关注的是向量之间的角度关系,相对差异,而不关心它们的绝对大小;其取值范围在 [-1, 1]之间;两个向量相同时为1,正交时为0,相反时为-1。即在取值范围内,余弦距离值越大,两个向量越接近;余弦距离为向量之间的相似度量提供了一个稳定的指标,无论向量的维度多与少,特征的取值范围大与小。余弦距离的取值范围始终都能保持在[-1, 1]。余弦相似度广泛应用在文本,图像和视频领域。相比之下欧氏距离则受到维度多少,取值范围大小以及可解释性的限制。当特征的取值以及特征向量经过模长归一化之后,余弦距离和欧氏距离又存在以下的单调关系。
∣ ∣ A − B ∣ ∣ 2 2 = 2 ( 1 − cos ⁡ ( A , B ) ) ||A-B||^2_2=\sqrt{2(1-\cos(A,B))} AB22=2(1cos(A,B))
其中 ∣ ∣ A ∣ ∣ 2 2 = 1 , ∣ ∣ B ∣ ∣ 2 2 = 1 ||A||^2_2=1, ||B||^2_2=1 A22=1,B22=1


2、在模型评估过程中,过拟合和欠拟合具体指什么现象

过拟合现象是指,模型在训练集中的表现过于完美,而导致在测试集中准确率反而降低,效果不好。
欠拟合现象是指,模型本身在训练集上的表现就不太好,可能是模型或者数据集的问题。

参考答案:
过拟合是指模型对于训练数据拟合呈过当的情况,反映到评估指标上,就是模型在训练集上的表现好,但是在测试集和新数据上的表现较差。欠拟合指的是模型在训练和测试时表现都不好。用模型在数据上的偏差和方差指标来表示就是:欠拟合时,偏差较大;而过拟合时,偏差小但方差大。


3、降低过拟合和欠拟合的方法

降低过拟合:

  • 增加训练数据
  • 减少特征数
  • 降低模型复杂度
  • 提前结束

解决欠拟合:

  • 模型复杂化
  • 增加更多的特征,使输入数据有更强的表达能力
  • 调整参数和超参数

参考博客

参考答案:
降低过拟合的方法:

  1. 特征 - 减少不必要的特征
    a. 根据特征的重要性,直接删除稀疏特征
    b. 通过收集更多的数据,或者用数据增广的方法,产生更多的训练数据,从而阻止模型学习不相关的特征
  2. 模型复杂度 - 降低模型复杂度
    a. 神经网络,减少网络层数和神经元个数
    b. 决策树模型中降低树的深度,进行剪枝
  3. 正则化 - 加入正则化项并提高正则化项的系数
    a. 对复杂模型和系数比较大的模型进行惩罚,使得算法倾向于训练简单的模型。
  4. 多模型决策
    a. 采用 Bagging 或者 Stacking 的集成方法,将多个模型融合起来共同决策,以减少模型预测的 variance。
  5. 模型训练
    a. 训练模型时采用早停策略或采用知识蒸馏方法进行训练。
  6. 数据目标 - 平滑目标
    a. 比如用于分类任务的标签平滑方法,即在One-hot 表示的ground true 标签里面,将值为 1 那一位上的一小部分值减掉,均分到其他值为 0 的位值上。

降低欠拟合的方法:

  1. 特征 - 添加新特征
    比如上下文特征,ID类特征,组合特征等等
  2. 模型复杂度 - 增加模型复杂度
    比如在线性模型中添加高次项
    在神经网络模型中增加网络层数或者神经元个数
  3. 正则化 - 减少正则化项的系数

4、L1和L2正则先验分别服从什么分布

L1是Laplace(拉普拉斯)分布,L2是Gaussian(高斯)分布

Laplace分布公式为:
f ( x ∣ μ , σ ) = 1 2 σ exp ⁡ ( − ∣ x − μ ∣ σ ) f(x|\mu,\sigma)=\frac{1}{2\sigma}\exp(-\frac{|x-\mu|}{\sigma}) f(xμ,σ)=2σ1exp(σxμ)
Gaussian分布公式为:
f ( x ∣ μ , σ ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x|\mu,\sigma)=\frac{1}{\sqrt{2}\pi\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2}) f(xμ,σ)=2 πσ1exp(2σ2(xμ)2)

接下来从最大后验概率的角度进行推导和分析。在机器学习建模中,我们知道了 X X X y y y 以后,需要对参数进行建模。那么后验概率表达式如下:
P = log ⁡ ( P ( y ∣ X , w ) ⋅ P ( w ) ) = l o g ( P ( y ∣ X , w ) ) + l o g ( P ( w ) ) P=\log(P(y|X,w)\cdot P(w))=log(P(y|X, w)) + log(P(w)) P=log(P(yX,w)P(w))=log(P(yX,w))+log(P(w))
可以看出来后验概率函数是在似然函数的基础上增加了 l o g ( P ( w ) ) log(P(w)) log(P(w)) P ( w ) P(w) P(w) 的意义是对权重系数 w w w 的概率分布的先验假设,在收集到训练样本 X , y X, y X,y后,则可根据 w w w X , y X, y X,y下的后验概率对 w w w 进行修正,从而做出对 w w w 的更好地估计。若假设的 w w w 先验分布为 0 均值的高斯分布,即:
f ( w ) = 1 2 π σ exp ⁡ ( − w 2 2 σ 2 ) f(w)=\frac{1}{\sqrt{2}\pi\sigma}\exp(-\frac{w^2}{2\sigma^2}) f(w)=2 πσ1exp(2σ2w2)
则有:
log ⁡ ( P ( w ) ) = log ⁡ ( ∏ j P ( w j ) ) = log ⁡ ( ∑ j [ 1 2 π σ exp ⁡ ( − w j 2 2 σ 2 ) ] ) = − 1 2 σ 2 ∑ j w j 2 + C \begin{aligned} \log(P(w)) = \log(\prod_jP(w_j))&=\log(\sum_j[\frac{1}{\sqrt{2}\pi\sigma}\exp(-\frac{w^2_j}{2\sigma^2})]) \\ &=-\frac{1}{2\sigma^2}\sum_jw_j^2+C \end{aligned} log(P(w))=log(jP(wj))=log(j[2 πσ1exp(2σ2wj2)])=2σ21jwj2+C

可以看到,在高斯分布下的效果等价于在代价函数中增加 L 2 L2 L2 正则项。

若假设服从均值为0,参数为 σ \sigma σ的拉普拉斯分布,即:
f ( w j ) = 1 2 σ exp ⁡ ( − ∣ w ∣ σ ) f(w_j)=\frac{1}{2\sigma}\exp(-\frac{|w_|}{\sigma}) f(wj)=2σ1exp(σw)
则有:
l o g ( P ( w ) ) = l o g ( ∏ j P ( w j ) ) = log ⁡ ( ∑ j [ 1 2 σ exp ⁡ ( − ∣ w j ∣ σ ) ] ) = − 1 σ ∑ j ∣ w j ∣ + C \begin{aligned} log(P(w))&=log(\prod_jP(w_j))&=\log(\sum_j[\frac{1}{2\sigma}\exp(-\frac{|w_j|}{\sigma})]) \\ &=-\frac{1}{\sigma}\sum_j|w_j|+C \end{aligned} log(P(w))=log(jP(wj))=σ1jwj+C=log(j[2σ1exp(σwj)])
可以看到,在拉普拉斯分布下的效果等价于在代价函数中增加 L 1 L1 L1 正则项。


5、树形结构为什么不需要归一化?

树形结构机器学习算法模型一般是概率模型,与样本具体数值无关,不需要进行梯度下降,只需要各个特征及其不同类别的值的占比来计算信息熵、信息增益等值就行。

参考答案:
决策树的学习过程本质上是选择合适的特征,分裂并构建树节点的过程,而分裂节点的标准是由树构建前后的目标增益(比如信息增益和信息增益率)决定的。这些指标与特征之间的数值范围差异并无关系。


修改时间:
2022.1.11

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值