习题10-4
1. 求球面 x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2=a^2 x2+y2+z2=a2 含在圆柱面 x 2 + y 2 = a x x^2+y^2=a x x2+y2=ax 内部的那部分面积.
2. 求锥面 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 被柱面 z 2 = 2 x z^2=2 x z2=2x 所割下部分的曲面面积.
3. 求底圆半径相等的两个直交圆柱面 x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2 及 x 2 + z 2 = R 2 x^2+z^2=R^2 x2+z2=R2 所围立体的表面积.
4. 设薄片所占的闭区域 D D D 如下, 求均匀薄片的质心 :
(1) D D D 由 y = 2 p x , x = x 0 , y = 0 y=\sqrt{2 p x}, x=x_0, y=0 y=2px,x=x0,y=0 所围成;
(2) D D D 是半椭圆形闭区域 { ( x , y ) ∣ x 2 a 2 + y 2 b 2 ⩽ 1 , y ⩾ 0 } \left\{(x, y) \mid \frac{x^2}{a^2}+\frac{y^2}{b^2} \leqslant 1, y \geqslant 0\right\} {(x,y)∣a2x2+b2y2⩽1,y⩾0};
(3) D D D 是界于两个圆 ρ = a cos θ , ρ = b cos θ ( 0 < a < b ) \rho=a \cos \theta, \rho=b \cos \theta(0<a<b) ρ=acosθ,ρ=bcosθ(0<a<b) 之间的闭区域.
5. 设平面薄片所占的闭区域 D D D 由抛物线 y = x 2 y=x^2 y=x2 及直线 y = x y=x y=x 所围成, 它在点 ( x , y ) (x, y) (x,y) 处的面密度 μ ( x , y ) = x 2 y \mu(x, y)=x^2 y μ(x,y)=x2y, 求该薄片的质心.
6. 设有一等腰直角三角形薄片, 腰长为 a a a, 各点处的面密度等于该点到直角顶点的距离 的平方, 求这薄片的质心.
7. 利用三重积分计算下列由曲面所围立体的质心(设密度 ρ = 1 \rho=1 ρ=1 ):
(1) z 2 = x 2 + y 2 , z = 1 z^2=x^2+y^2, z=1 z2=x2+y2,z=1;
(2) z = A 2 − x 2 − y 2 , z = a 2 − x 2 − y 2 ( A > a > 0 ) , z = 0 z=\sqrt{A^2-x^2-y^2}, z=\sqrt{a^2-x^2-y^2}(A>a>0), z=0 z=A2−x2−y2,z=a2−x2−y2(A>a>0),z=0;
(3) z = x 2 + y 2 , x + y = a , x = 0 , y = 0 , z = 0 z=x^2+y^2, x+y=a, x=0, y=0, z=0 z=x2+y2,x+y=a,x=0,y=0,z=0.
8. 设球占有闭区域 Ω = { ( x , y , z ) ∣ x 2 + y 2 + z 2 ⩽ 2 R z } \Omega=\left\{(x, y, z) \mid x^2+y^2+z^2 \leqslant 2 R z\right\} Ω={(x,y,z)∣x2+y2+z2⩽2Rz}, 它在内部各点处的密度的大小等于该点到坐标原点的距离的平方. 试求这球的质心.
9. 设均匀薄片 (面密度为常数 1) 所占闭区域 D D D 如下, 求指定的转动惯量:
(1) D = { ( x , y ) ∣ x 2 a 2 + y 2 b 2 ⩽ 1 } D=\left\{(x, y) \mid \frac{x^2}{a^2}+\frac{y^2}{b^2} \leqslant 1\right\} D={(x,y)∣a2x2+b2y2⩽1}, 求 I y I_y Iy;
(2) D D D 由抛物线 y 2 = 9 2 x y^2=\frac{9}{2} x y2=29x 与直线 x = 2 x=2 x=2 所围成, 求 I x I_x Ix 和 I y I_y Iy;
(3) D D D 为矩形闭区域 { ( x , y ) ∣ 0 ⩽ x ⩽ a , 0 ⩽ y ⩽ b } \{(x, y) \mid 0 \leqslant x \leqslant a, 0 \leqslant y \leqslant b\} {(x,y)∣0⩽x⩽a,0⩽y⩽b}, 求 I x I_x Ix 和 I y I_y Iy.
10. 已知均匀矩形板 (面密度为常量 μ \mu μ ) 的长和宽分别为 b b b 和 h h h, 计算此矩形板对于通过其形心且分别与一边平行的两轴的转动惯量.
11. 一均匀物体 (密度 ρ \rho ρ 为常量) 占有的闭区域 Ω \Omega Ω 由曲面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 和平面 z = 0 , ∣ x ∣ = a z=0,|x|=a z=0,∣x∣=a, ∣ y ∣ = a |y|=a ∣y∣=a 所围成,
(1) 求物体的体积;
(2) 求物体的质心;
(3) 求物体关于 z z z 轴的转动惯量.