【课后习题】高等数学第七版下第十章 重积分 第四节 重积分的应用

习题10-4

1. 求球面 x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2=a^2 x2+y2+z2=a2 含在圆柱面 x 2 + y 2 = a x x^2+y^2=a x x2+y2=ax 内部的那部分面积.

在这里插入图片描述

在这里插入图片描述

2. 求锥面 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 被柱面 z 2 = 2 x z^2=2 x z2=2x 所割下部分的曲面面积.

在这里插入图片描述

在这里插入图片描述

3. 求底圆半径相等的两个直交圆柱面 x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2 x 2 + z 2 = R 2 x^2+z^2=R^2 x2+z2=R2 所围立体的表面积.

在这里插入图片描述

在这里插入图片描述

4. 设薄片所占的闭区域 D D D 如下, 求均匀薄片的质心 :

(1) D D D y = 2 p x , x = x 0 , y = 0 y=\sqrt{2 p x}, x=x_0, y=0 y=2px ,x=x0,y=0 所围成;

在这里插入图片描述

(2) D D D 是半椭圆形闭区域 { ( x , y ) ∣ x 2 a 2 + y 2 b 2 ⩽ 1 , y ⩾ 0 } \left\{(x, y) \mid \frac{x^2}{a^2}+\frac{y^2}{b^2} \leqslant 1, y \geqslant 0\right\} {(x,y)a2x2+b2y21,y0};

在这里插入图片描述

(3) D D D 是界于两个圆 ρ = a cos ⁡ θ , ρ = b cos ⁡ θ ( 0 < a < b ) \rho=a \cos \theta, \rho=b \cos \theta(0<a<b) ρ=acosθ,ρ=bcosθ(0<a<b) 之间的闭区域.

在这里插入图片描述

在这里插入图片描述

5. 设平面薄片所占的闭区域 D D D 由抛物线 y = x 2 y=x^2 y=x2 及直线 y = x y=x y=x 所围成, 它在点 ( x , y ) (x, y) (x,y) 处的面密度 μ ( x , y ) = x 2 y \mu(x, y)=x^2 y μ(x,y)=x2y, 求该薄片的质心.

在这里插入图片描述

在这里插入图片描述

6. 设有一等腰直角三角形薄片, 腰长为 a a a, 各点处的面密度等于该点到直角顶点的距离 的平方, 求这薄片的质心.

在这里插入图片描述

7. 利用三重积分计算下列由曲面所围立体的质心(设密度 ρ = 1 \rho=1 ρ=1 ):

(1) z 2 = x 2 + y 2 , z = 1 z^2=x^2+y^2, z=1 z2=x2+y2,z=1;

在这里插入图片描述

(2) z = A 2 − x 2 − y 2 , z = a 2 − x 2 − y 2 ( A > a > 0 ) , z = 0 z=\sqrt{A^2-x^2-y^2}, z=\sqrt{a^2-x^2-y^2}(A>a>0), z=0 z=A2x2y2 ,z=a2x2y2 (A>a>0),z=0;

在这里插入图片描述

(3) z = x 2 + y 2 , x + y = a , x = 0 , y = 0 , z = 0 z=x^2+y^2, x+y=a, x=0, y=0, z=0 z=x2+y2,x+y=a,x=0,y=0,z=0.

在这里插入图片描述

在这里插入图片描述

8. 设球占有闭区域 Ω = { ( x , y , z ) ∣ x 2 + y 2 + z 2 ⩽ 2 R z } \Omega=\left\{(x, y, z) \mid x^2+y^2+z^2 \leqslant 2 R z\right\} Ω={(x,y,z)x2+y2+z22Rz}, 它在内部各点处的密度的大小等于该点到坐标原点的距离的平方. 试求这球的质心.

在这里插入图片描述

9. 设均匀薄片 (面密度为常数 1) 所占闭区域 D D D 如下, 求指定的转动惯量:

(1) D = { ( x , y ) ∣ x 2 a 2 + y 2 b 2 ⩽ 1 } D=\left\{(x, y) \mid \frac{x^2}{a^2}+\frac{y^2}{b^2} \leqslant 1\right\} D={(x,y)a2x2+b2y21}, 求 I y I_y Iy;

在这里插入图片描述

(2) D D D 由抛物线 y 2 = 9 2 x y^2=\frac{9}{2} x y2=29x 与直线 x = 2 x=2 x=2 所围成, 求 I x I_x Ix I y I_y Iy;

在这里插入图片描述

在这里插入图片描述

(3) D D D 为矩形闭区域 { ( x , y ) ∣ 0 ⩽ x ⩽ a , 0 ⩽ y ⩽ b } \{(x, y) \mid 0 \leqslant x \leqslant a, 0 \leqslant y \leqslant b\} {(x,y)0xa,0yb}, 求 I x I_x Ix I y I_y Iy.

在这里插入图片描述

10. 已知均匀矩形板 (面密度为常量 μ \mu μ ) 的长和宽分别为 b b b h h h, 计算此矩形板对于通过其形心且分别与一边平行的两轴的转动惯量.

在这里插入图片描述

在这里插入图片描述

11. 一均匀物体 (密度 ρ \rho ρ 为常量) 占有的闭区域 Ω \Omega Ω 由曲面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 和平面 z = 0 , ∣ x ∣ = a z=0,|x|=a z=0,x=a, ∣ y ∣ = a |y|=a y=a 所围成,

(1) 求物体的体积;

(2) 求物体的质心;

(3) 求物体关于 z z z 轴的转动惯量.

在这里插入图片描述

在这里插入图片描述

12. 求半径为 a a a 、高为 h h h 的均匀圆柱体对于过中心而平行于母线的轴的转动惯量 (设密度 ρ = 1 ) \rho=1) ρ=1).

在这里插入图片描述

13. 设面密度为常量 μ \mu μ 的质量均匀的半圆环形薄片占有闭区域 D = { ( x , y , 0 ) ∣ R 1 ⩽ D=\left\{(x, y, 0) \mid R_1 \leqslant\right. D={(x,y,0)R1 x 2 + y 2 ⩽ R 2 , x ⩾ 0 } \left.\sqrt{x^2+y^2} \leqslant R_2, x \geqslant 0\right\} x2+y2 R2,x0}, 求它对位于 z z z 轴上点 M 0 ( 0 , 0 , a ) ( a > 0 ) M_0(0,0, a)(a>0) M0(0,0,a)(a>0) 处单位质量的质点的引力 F F F.

在这里插入图片描述

在这里插入图片描述

14. 设均匀柱体密度为 ρ \rho ρ, 占有闭区域 Ω = { ( x , y , z ) ∣ x 2 + y 2 ⩽ R 2 , 0 ⩽ z ⩽ h ∣ \Omega=\left\{(x, y, z)\left|x^2+y^2 \leqslant R^2, 0 \leqslant z \leqslant h\right|\right. Ω={(x,y,z)x2+y2R2,0zh, 求它对于位于点 M 0 ( 0 , 0 , a ) ( a > h ) M_0(0,0, a)(a>h) M0(0,0,a)(a>h) 处的单位质量的质点的引力.

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值