学习同余,记一下笔记
定理
给定一个整数 m m m,如果用 m m m去除任意两个正整数 a 与 b {a与b} a与b所得到的余数相同,我们就称 a , b a,b a,b对模 m m m同余,记作:
a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm)
否则称 a 、 b a、b a、b对模 m m m不同余,记作:
a ≢ b ( m o d m ) a\not\equiv b\pmod m a≡b(modm)
其中 m m m称作模。
我们有
m ∣ ( a − b ) m\mid(a-b) m∣(a−b)
一般性质
同余是一种等价关系,即具有自反性、对称性和传递性:
自反性 a ≡ a ( m o d m ) a\equiv a\pmod m a≡a(modm);
对称性 若 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm),则 b ≡ a ( m o d m ) b\equiv a\pmod m b≡a(modm);
传递性 若 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm), b ≡ c ( m o d m ) b\equiv c\pmod m b≡c(modm),则 a ≡ c ( m o d m ) a\equiv c\pmod m a≡c(modm)。
同余的四个与等式相同的性质
1.如果 a 1 、 b 1 、 a 2 、 b 2 a_1、b_1、a_2、b_2 a1、b1、a2、b2都是整数,而 m m m是正整数,则当 a 1 ≡ b 1 ( m o d m ) a_1\equiv{b_1}\pmod m a1≡b1(modm)、 a 2 ≡ b 2 ( m o d m ) a_2\equiv{b_2}\pmod m a2≡b2(modm)都成立时,有 a 1 ± a 2 ≡ b 1 ± b 2 ( m o d m ) a_1\pm a_2\equiv{b_1\pm b_2}\pmod m a1±a2≡b1±b2(modm);
2.如果 a 1 、 b 1 、 a 2 、 b 2 a_1、b_1、a_2、b_2 a1、b1、a2、b2都是整数,而 m m m是正整数,则当 a 1 ≡ b 1 ( m o d m ) a_1\equiv{b_1}\pmod m a1≡b1(modm)、 a 2 ≡ b 2 ( m o d m ) a_2\equiv{b_2}\pmod m a2≡b2(modm)都成立时,有 a 1 ∗ a 2 ≡ b 1 ∗ b 2 ( m o d m ) a_1 * a_2 \equiv{b_1*b_2}\pmod m a1∗a2≡b1∗b2(modm);
3.如果 a 、 b 、 c a、b、c a、b、c都是整数,而 m m m是正整数,则当 a + b ≡ c ( m o d m ) a+b\equiv c\pmod m a+b≡c(modm)成立时,有 a ≡ c − b ( m o d m ) a\equiv c-b\pmod m a≡c−b(modm);
同余的五个与等式不相似的性质
1.如果 a 、 b a、b a、b是整数,而 k 、 m k、m k、m是正整数,则当 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm)成立时,有 a k ≡ b k ( m o d m k ) ak\equiv bk\pmod {mk} ak≡bk(modmk);
2.如果 a 、 b a、b a、b是整数,而 d 、 m d、m d、m是正整数, d d d是 a 、 b a、b a、b及 m m m的任意公因数(即 d ∣ ( a , b , m ) d\mid {(a,b,m)} d∣(a,b,m)),则当 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm)成立时,有 a d ≡ b d ( m o d m d ) \frac{a}{d}\equiv \frac{b}{d}\pmod{\frac{m}{d}} da≡db(moddm);
3.如果 a 、 b a、b a、b是整数,而 d 、 m d、m d、m是正整数,且 d ∣ m d\mid m d∣m,则当 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm)成立时,有 a ≡ b ( m o d d ) a\equiv b\pmod d a≡b(modd);
4.(百度上没找到);
5.如果 a 、 b a、b a、b都是整数,而 d 、 m d、m d、m是正整数,则当 a ≡ b ( m o d m ) a\equiv{b}\pmod{m} a≡b(modm)成立时,有 ( a , m ) = ( b , m ) (a,m)=(b,m) (a,m)=(b,m),若 ( d ∣ m ) a n d ( d ∣ a o r d ∣ b ) (d\mid m)\ and\ (d\mid a\ or d\mid b) (d∣m) and (d∣a ord∣b),则 ( d ∣ a ) o r ( d ∣ b ) (d\mid a)\ or\ (d\mid b) (d∣a) or (d∣b);