同余的性质

学习同余,记一下笔记

定理

给定一个整数 m m m,如果用 m m m去除任意两个正整数 a 与 b {a与b} ab所得到的余数相同,我们就称 a , b a,b ab对模 m m m同余,记作:
a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)
否则称 a 、 b a、b ab对模 m m m不同余,记作:
a ≢ b ( m o d m ) a\not\equiv b\pmod m ab(modm)
其中 m m m称作模。
我们有
m ∣ ( a − b ) m\mid(a-b) m(ab)

一般性质

同余是一种等价关系,即具有自反性、对称性和传递性:
自反性 a ≡ a ( m o d m ) a\equiv a\pmod m aa(modm);
对称性 若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm),则 b ≡ a ( m o d m ) b\equiv a\pmod m ba(modm);
传递性 若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm) b ≡ c ( m o d m ) b\equiv c\pmod m bc(modm),则 a ≡ c ( m o d m ) a\equiv c\pmod m ac(modm)

同余的四个与等式相同的性质

1.如果 a 1 、 b 1 、 a 2 、 b 2 a_1、b_1、a_2、b_2 a1b1a2b2都是整数,而 m m m是正整数,则当 a 1 ≡ b 1 ( m o d m ) a_1\equiv{b_1}\pmod m a1b1(modm) a 2 ≡ b 2 ( m o d m ) a_2\equiv{b_2}\pmod m a2b2(modm)都成立时,有 a 1 ± a 2 ≡ b 1 ± b 2 ( m o d m ) a_1\pm a_2\equiv{b_1\pm b_2}\pmod m a1±a2b1±b2(modm)
2.如果 a 1 、 b 1 、 a 2 、 b 2 a_1、b_1、a_2、b_2 a1b1a2b2都是整数,而 m m m是正整数,则当 a 1 ≡ b 1 ( m o d m ) a_1\equiv{b_1}\pmod m a1b1(modm) a 2 ≡ b 2 ( m o d m ) a_2\equiv{b_2}\pmod m a2b2(modm)都成立时,有 a 1 ∗ a 2 ≡ b 1 ∗ b 2 ( m o d m ) a_1 * a_2 \equiv{b_1*b_2}\pmod m a1a2b1b2(modm)
3.如果 a 、 b 、 c a、b、c abc都是整数,而 m m m是正整数,则当 a + b ≡ c ( m o d m ) a+b\equiv c\pmod m a+bc(modm)成立时,有 a ≡ c − b ( m o d m ) a\equiv c-b\pmod m acb(modm)

同余的五个与等式不相似的性质

1.如果 a 、 b a、b ab是整数,而 k 、 m k、m km是正整数,则当 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)成立时,有 a k ≡ b k ( m o d m k ) ak\equiv bk\pmod {mk} akbk(modmk)
2.如果 a 、 b a、b ab是整数,而 d 、 m d、m dm是正整数, d d d a 、 b a、b ab m m m的任意公因数(即 d ∣ ( a , b , m ) d\mid {(a,b,m)} d(a,b,m)),则当 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)成立时,有 a d ≡ b d ( m o d m d ) \frac{a}{d}\equiv \frac{b}{d}\pmod{\frac{m}{d}} dadb(moddm);
3.如果 a 、 b a、b ab是整数,而 d 、 m d、m dm是正整数,且 d ∣ m d\mid m dm,则当 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)成立时,有 a ≡ b ( m o d d ) a\equiv b\pmod d ab(modd);
4.(百度上没找到);
5.如果 a 、 b a、b ab都是整数,而 d 、 m d、m dm是正整数,则当 a ≡ b ( m o d m ) a\equiv{b}\pmod{m} ab(modm)成立时,有 ( a , m ) = ( b , m ) (a,m)=(b,m) (a,m)=(b,m),若 ( d ∣ m )   a n d   ( d ∣ a   o r d ∣ b ) (d\mid m)\ and\ (d\mid a\ or d\mid b) (dm) and (da ordb),则 ( d ∣ a )   o r   ( d ∣ b ) (d\mid a)\ or\ (d\mid b) (da) or (db);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值