切比雪夫多项式.
- 切比雪夫,俄文原名 П а ф н у ˊ т и й Л ь в о ˊ в и ч Ч е б ы ш ё в Пафну́тий Льво́вич Чебышёв ПафнуˊтийЛьвоˊвичЧебышёв ,俄罗斯数学家、力学家。初次接触是在概率论中,他提出了切比雪夫不等式。
设随机变量 X X X 具有数学期望 E [ X ] = μ E[X]=\mu E[X]=μ 与方差 D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2,则对任意正数 ϵ > 0 \epsilon>0 ϵ>0,有不等式 P { ∣ X − μ ∣ < ϵ } ≥ 1 − ( σ ϵ ) 2 . P\{|X-\mu|<\epsilon\}≥1-(\frac{\sigma}{\epsilon})^2. P{∣X−μ∣<ϵ}≥1−(ϵσ)2.
- 【定义】多项式序列 T n ( x ) = c o s ( n ⋅ a r c c o s x ) , x ∈ [ − 1 , 1 ] T_n(x)=cos(n·arccosx),x\in[-1,1] Tn(x)=cos(n⋅arccosx),x∈[−1,1] 称为切比雪夫多项式。
- { T n ( x ) } \{T_n(x)\} {Tn(x)} 在区间 [ − 1 , 1 ] [-1,1] [−1,1] 上带权函数 ρ ( x ) = ( 1 − x 2 ) − 1 \rho(x)=(\sqrt{1-x^2})^{-1} ρ(x)=(1−x2)−1 正交。
- ( T n , T m ) = ∫ − 1 1 1 1 − x 2 c o s ( n ⋅ a r c c o s x ) c o s ( m ⋅ a r c c o s x ) d x = { 0 , n ≠ m π 2 , n = m > 0 π , n = m = 0 ; n , m = 0 , 1 , 2 , . . . (T_n,T_m)=\int_{-1}^1\frac{1}{\sqrt{1-x^2}}cos(n·arccosx)cos(m·arccosx)dx=\left\{ \begin{aligned} &0,n≠m\\ &\frac{\pi}{2},n=m>0 \\ &\pi,n=m=0 \end{aligned} \right.;n,m=0,1,2,... (Tn,Tm)=∫−111−x21cos(n⋅arccosx)cos(m⋅arccosx)dx=⎩⎪⎪⎨⎪⎪⎧0,n=m2π,n=m>0π,n=m=0;n,m=0,1,2,...
- 【证明】进行代换 x = c o s θ x=cos\theta x=cosθ,则 θ = a r c c o s x \theta=arccosx θ=arccosx,因此上式中的积分可以写为 ∫ − 1 1 1 s i n θ ⋅ c o s n θ ⋅ c o s m θ ⋅ d ( c o s θ ) = ∫ 0 π c o s n θ ⋅ c o s m θ ⋅ d θ . \int_{-1}^1\frac{1}{sin\theta}·cosn\theta·cosm\theta·d(cos\theta)=\int_0^\pi cosn\theta·cosm\theta·d\theta. ∫−11sinθ1⋅cosnθ⋅cosmθ⋅d(cosθ)=∫0πcosnθ⋅cosmθ⋅dθ.
- 和勒让德多项式一样,当 n n n 为偶数时, T n ( x ) T_n(x) Tn(x) 是偶函数;当 n n n 为奇数时, T n ( x ) T_n(x) Tn(x) 是奇函数,即 T n ( − x ) = ( − 1 ) n T n ( x ) . T_n(-x)=(-1)^nT_n(x). Tn(−x)=(−1)nTn(x).
- 【证明】 T n ( − x ) = c o s [ n ⋅ a r c c o s ( − x ) ] = c o s [ n ⋅ ( π − a r c c o s x ) ] = c o s ( n π ) c o s ( n ⋅ a r c c o s x ) + s i n ( n π ) s i n ( n ⋅ a r c c o s x ) = c o s ( n π ) c o s ( n ⋅ a r c c o s x ) = ( − 1 ) n c o s ( n ⋅ a r c c o s x ) . T_n(-x)=cos[n·arccos(-x)]=cos[n·(\pi-arccosx)]=cos(n\pi) cos(n·arccosx)+sin(n\pi)sin(n·arccosx)=cos(n\pi) cos(n·arccosx)=(-1)^ncos(n·arccosx). Tn(−x)=cos[n⋅arccos(−x)]=cos[n⋅(π−arccosx)]=cos(nπ)cos(n⋅arccosx)+sin(nπ)sin(n⋅arccosx)=cos(nπ)cos(n⋅arccosx)=(−1)ncos(n⋅arccosx).
- 切比雪夫多项式可以由如下递推式定义: { T 0 ( x ) = 1 T 1 ( x ) = x T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) , n = 1 , 2 , . . . \left\{ \begin{aligned} &T_0(x)=1\\ &T_1(x)=x\\ &T_{n+1}(x)=2xT_n(x)-T_{n-1}(x),n=1,2,... \end{aligned} \right. ⎩⎪⎨⎪⎧T0(x)=1T1(x)=xTn+1(x)=2xTn(x)−Tn−1(x),n=1,2,...
- 【证明】依旧使用代换 x = c o s θ x=cos\theta x=cosθ,那么 T n ( x ) = c o s ( n θ ) T_n(x)=cos(n\theta) Tn(x)=cos(nθ),由于 c o s [ ( n + 1 ) θ ] = c o s ( n θ ) c o s θ − s i n ( n θ ) s i n θ ; c o s [ ( n − 1 ) θ ] = c o s ( n θ ) c o s θ + s i n ( n θ ) s i n θ cos[(n+1)\theta]=cos(n\theta)cos\theta-sin(n\theta)sin\theta;cos[(n-1)\theta]=cos(n\theta)cos\theta+sin(n\theta)sin\theta cos[(n+1)θ]=cos(nθ)cosθ−sin(nθ)sinθ;cos[(n−1)θ]=cos(nθ)cosθ+sin(nθ)sinθ,两式相加得到 c o s [ ( n + 1 ) θ ] + c o s [ ( n − 1 ) θ ] = 2 c o s ( n θ ) c o s θ . cos[(n+1)\theta]+cos[(n-1)\theta]=2cos(n\theta) cos\theta. cos[(n+1)θ]+cos[(n−1)θ]=2cos(nθ)cosθ.即 T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) . T_{n+1}(x)=2xT_n(x)-T_{n-1}(x). Tn+1(x)=2xTn(x)−Tn−1(x).
带权内积.
- 在区间 [ − 1 , 1 ] [-1,1] [−1,1] 定义带权函数 ρ ( x ) = 1 1 − x 2 \rho(x)=\frac{1}{\sqrt{1-x^2}} ρ(x)=1−x21 的内积: ( f , g ) = ∫ − 1 1 f ( x ) ⋅ g ( x ) 1 − x 2 d x . (f,g)=\int_{-1}^1\frac{f(x)·g(x)}{\sqrt{1-x^2}}dx. (f,g)=∫−111−x2f(x)⋅g(x)dx.相应地,诱导出范数 ∣ ∣ f ∣ ∣ 2 = ∫ − 1 1 f 2 ( x ) 1 − x 2 d x . ||f||^2=\int_{-1}^1\frac{f^2(x)}{\sqrt{1-x^2}}dx. ∣∣f∣∣2=∫−111−x2f2(x)dx.
- 例如求解如下问题:尝试确定参数 a , b , c a,b,c a,b,c 使得 I ( x ; a , b , c ) = ∫ − 1 1 [ 1 − x 2 − a x 2 − b x − c ] 2 ⋅ 1 1 − x 2 d x I(x;a,b,c)=\int_{-1}^1[\sqrt{1-x^2}-ax^2-bx-c]^2·\frac{1}{\sqrt{1-x^2}}dx I(x;a,b,c)=∫−11[1−x2−ax2−bx−c]2⋅1−x21dx取得最小值。
- 上述问题的本质就是在 [ − 1.1 ] [-1.1] [−1.1] 上求 f ( x ) = 1 − x 2 f(x)=\sqrt{1-x^2} f(x)=1−x2 关于权函数 1 1 − x 2 \frac{1}{\sqrt{1-x^2}} 1−x21 的二次最佳平方多项式。