论文解读第三代GCN《 Deep Embedding for CUnsupervisedlustering Analysis》

Python微信订餐小程序课程视频

https://edu.csdn.net/course/detail/36074

Python实战量化交易理财系统

https://edu.csdn.net/course/detail/35475

Paper Information

Titlel:《Semi-Supervised Classification with Graph Convolutional Networks》Authors:Thomas Kipf, M. WellingSource:2016, ICLRPaper:Download Code:Download


致敬  Thomas Kipf

我原以为将  GCN 发扬光大的人应该是一位老先生,毕竟能将一个理论影响全世界的人必应该有很多的知识储备(主观直觉),然后我发现自己大错特错,没想到将 GCN 发扬光大的是 Thomas Kipf  ,一位20年毕业的博士生,来自同龄人的压迫…

这里奉上其博士论文《Deep learning with graph-structured representations》 。

其个人主页:Thomas Kipf

总结:没有对比没有伤害,希望自己有朝一日也可以…hhh

本文主要是:基础+二代GCN+三代GCN


0 Knowledge review

0.1 卷积

卷积的定义:(f∗g)(t)(f∗g)(t) 为 f∗gf ∗ g 的卷积

连续形式:

(f∗g)(t)=∫Rf(x)g(t−x)dx(f * g)(t)=\int_{R} f(x) g(t-x) d x

离散形式:

(f∗g)(t)=∑Rf(x)g(t−x)(f * g)(t)=\sum\limits _{R} f(x) g(t-x)

0.2 傅里叶变换

核心:将函数用一组正交基函数的线性组合表述出来。

Fourier 变换:

F{f}(v)=∫Rf(x)e−2πix⋅vdxF{f}(v)=\int_{R} f(x) e^{-2 \pi i x \cdot v} d x

Where

e−2πix⋅ve^{-2 \pi i x \cdot v}  为傅里叶变换基函数,且为拉普拉斯算子的特征函数 。

Fourier 逆变换:

F−1{f}(x)=∫Rf(x)e2πix⋅vdvF^{-1}{f}(x)=\int_{R} f(x) e^{2 \pi i x \cdot v} d v

0.3 傅里叶变换和卷积的关系

定义 hh 是 ff 和 gg 的卷积,则有

F{f∗g}(v)=F{h}(v)=∫Rh(x)e−i2πvxdx=∫R∫Rf(τ)g(x−τ)e−i2πvxdτdx=∫R∫R[f(τ)e−i2πvτdτ][g(x−τ)e−i2πv(x−τ)dx]=∫R[f(τ)e−i2πvτdτ]∫R[g(x′)e−i2πvx′dx′]=F{f}(v)F{g}(v)\begin{aligned}\mathcal{F}{f * g}(v)&=\mathcal{F}{h}(v)\&=\int_{R} h(x) e^{-i 2 \pi v x} d x \&=\int_{R} \int_{R} f(\tau) g(x-\tau) e^{-i 2 \pi v x} d \tau d x \&=\int_{R} \int_{R}\left[f(\tau) e^{-i 2 \pi v \tau} d \tau\right]    \left[g(x-\tau) e^{-i 2 \pi v(x-\tau)} d x\right] \&=\int_{R}\left[f(\tau) e^{-i 2 \pi v \tau} d \tau\right] \int_{R}\left[g\left(x^{\prime}\right) e^{-i 2 \pi v x^{\prime}} d x^{\prime}\right]\&=\mathcal{F}{f }(v)\mathcal{F}{g }(v)\end{aligned}

对上式左右两边做逆变换  F−1F^{-1} ,得到

f∗g=F−1{F{f}⋅F{g}}f * g=\mathcal{F}^{-1}{\mathcal{F}{f} \cdot \mathcal{F}{g}}

0.4 拉普拉斯算子

定义:欧几里德空间中的一个二阶微分算子,定义为梯度的**散度。**可以写作 Δ\Delta, ∇2\nabla^{2}, ∇⋅∇\nabla \cdot \nabla  这几种形式。

例子:一维空间形式

Δf(x)=∂2f∂x2=f′′(x)≈f′(x)−f′(x−1)≈[f(x+1)−f(x)]−[f(x)−f(x−1)]=f(x+1)+f(x−1)−2f(x)\begin{aligned}\Delta f(x) &=\frac{\partial^{2} f}{\partial x^{2}} \&=f^{\prime \prime}(x) \& \approx f{\prime}(x)-f{\prime}(x-1) \& \approx[f(x+1)-f(x)]-[f(x)-f(x-1)] \&=f(x+1)+f(x-1)-2 f(x)\end{aligned}

即:拉普拉斯算子是所有自由度上进行微小变化后所获得的增益。

0.5 拉普拉斯矩阵

所有节点经过微小扰动产生的信息增益:

△f=(D−W)f=Lf\begin{array}{l}\bigtriangleup f &= (D-W) f \&=L f\end{array}

类比到图上,拉普拉斯算子可由拉普拉斯矩阵 LL 代替。

Where

LL is Graph Laplacian.

0.6 拉普拉斯矩阵谱分解

Lμk=λkμkL \mu_{k}=\lambda_{k} \mu_{k}

由于 LL  拉普拉斯矩阵是 实对称矩阵,所以

L=UΛU−1=UΛUTL=U \Lambda U^{-1}=U \Lambda U^{T}

Where

    • Λ\Lambda  为特征值构成的对角矩阵;
      • UU 为特征向量构成的正交矩阵。

0.7 图傅里叶变换

让拉普拉斯算子 △\bigtriangleup  作用到傅里叶变换的基函数上,则有:

Δe−2πix⋅v=∂2∂2ve−2πix⋅v=−(2πx)2e−2πix⋅v⇕Lμk=λkμk\begin{array}{c}\Delta e^{-2 \pi i x \cdot v}=\frac{\partial{2}}{\partial{2} v} e^{-2 \pi i x \cdot v}=-{(2 \pi x)}^2 e^{-2 \pi i x \cdot v} \\Updownarrow \L \mu_{k}=\lambda_{k} \mu_{k}\end{array}

Where

    • 拉普拉斯算子 △\bigtriangleup     与 拉普拉斯矩阵  LL   “等价”  。(两者均是信息增益度)
      • 正交基函数 e−2πix⋅ve^{-2 \pi i x \cdot v} 与 拉普拉斯矩阵的 正交特征向量  μk\mu_{k}  等价。
      • 根据亥姆霍兹方程 △f=∇2f=−k2f\bigtriangleup f= \nabla^{2} f=-k^{2} f ,−(2πx)2-(2 \pi x)^{2} 与  λk\lambda_{k}  等价。

对比傅里叶变换:

F{f}(v)=∫Rf(x)e−2πix⋅vdxF{f}(v)=\int_{R} f(x) e^{-2 \pi i x \cdot v} d x

可以近似得图傅里叶变换:

F{f}(λl)=F(λl)=n∑i=1u∗l(i)f(i)F{f}\left(\lambda_{l}\right)=F\left(\lambda_{l}\right)=\sum \limits _{i=1}^{n} u_{l}^{*}(i) f(i)

Where

    • λl\lambda_{l} 表示第  ll  个特征;
      • nn 表示 graph 上顶点个数;
      • f(i)f(i)  顶点 ii 上的函数。

Another thing:对于所有节点

    • 值向量

f=[f(0)f(1)⋯f(n−1)]f=\left[\begin{array}{c}f(0) \f(1) \\cdots \f(n-1)\end{array}\right]

    • nn 个特征向量组成的矩阵

UT=[→u0→u1⋯un−1]=[u00u10⋯un−10u01u11⋯un−11⋯⋯⋯⋯u0n−1u1n−1⋯un−1n−1]U^{T}=\left[\begin{array}{c}\overrightarrow{u_{0}} \\overrightarrow{u_{1}} \\cdots \u_{n-1}\end{array}\right]=\left[\begin{array}{cccc}u_{0}^{0} & u_{0}^{1} & \cdots & u_{0}^{n-1} \u_{1}^{0} & u_{1}^{1} & \cdots & u_{1}^{n-1} \\cdots & \cdots & \cdots & \cdots \u_{n-1}^{0} & u_{n-1}^{1} & \cdots & u_{n-1}^{n-1}\end{array}\right]

其中 →u0\overrightarrow{u_{0}} 为特征值为 λ0\lambda_{0} 对应的特征向量, →u1\overrightarrow{u_{1}} 、 →u2\overrightarrow{u_{2}} 、 …\ldots 类似

    • 图上傅里叶变换矩阵形式如下:

F(λ)=[ˆf(λ0)ˆf(λ1)⋯ˆf(λn−1)]=[u00u10⋯un−10u01u11⋯un−11⋯⋯⋯⋯u0n−1u1n−1⋯un−1n−1]⋅[f(0)f(1)⋯f(n−1)]F(\lambda)=\left[\begin{array}{c}\hat{f}\left(\lambda_{0}\right) \\hat{f}\left(\lambda_{1}\right) \\cdots \\hat{f}\left(\lambda_{n-1}\right)\end{array}\right]=\left[\begin{array}{cccc}u_{0}^{0} & u_{0}^{1} & \cdots & u_{0}^{n-1} \u_{1}^{0} & u_{1}^{1} & \cdots & u_{1}^{n-1} \\cdots & \cdots & \cdots & \cdots \u_{n-1}^{0} & u_{n-1}^{1} & \cdots & u_{n-1}^{n-1}\end{array}\right] \cdot\left[\begin{array}{c}f(0) \f(1) \\cdots \f(n-1)\end{array}\right]

常见的傅里叶变换形式为:(下面推导要用)

ˆf=UTf\hat{f}=U^{T} f

ff 在图上的逆傅里叶变换:

f=Uˆff=U \hat{f}

下面叙述正文~~~~~


Abstract

Our convolutional architecture via a localized first-order approximation of spectral graph convolutions.

1 Introduction

  • Target:classfy node in graph.
  • Our methods:a graph-based semi-supervised method.
  • Type of loss function:  graph-based regularization. Function as following:

L=L0+λLreg  with Lreg =∑i,jAij‖f(Xi)−f(Xj)‖2=f(X)⊤Δf(X)\begin {array}{l}\mathcal{L}=\mathcal{L}_{0}+\lambda \mathcal{L}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值