自学笔记--fluent中k-epsilon模型设置

在fluent软件中,k-epsilon模型有standard、RNG、Realizable三种,如下图所示。接下来要分享各种的适用场合。

  1. 标准 K - ε 模型
    • 适用场合:适用于各种类型的湍流流动,如边界层流动、管内流动、射流等,是工程领域中最常用的湍流模型之一。在一些流动条件较为简单、雷诺数较高、流动分离和旋流等现象不强烈的情况下,标准 K - ε 模型能够给出较为准确的结果,并且计算成本相对较低,具有较高的计算效率。
  2. RNG K - ε 模型
    • 适用场合:在处理高应变率、强旋转流动、弯曲壁面流动以及近壁区域的流动时,具有更高的精度。常用于航空航天领域中飞行器的绕流问题,如机翼周围的复杂流场模拟;叶轮机械内部的流动分析,如离心泵、涡轮机等的流场计算;以及具有强旋流的燃烧器内流场模拟等。
  3. 可实现 K - ε 模型
    • 适用场合:在预测分离流、回流以及复杂几何形状的流动时表现较好。常用于汽车外流场的模拟,以优化汽车外形设计,降低风阻;建筑风场的分析,评估建筑物周围的气流环境,为建筑设计提供参考;以及化工设备中具有复杂流道的流动模拟,如搅拌釜内的流场分析等。
k-epsilon湍流模型是一种经典的湍流模型,用于描述流体中湍流的行为,包括湍流的涡量强度、湍流能量的传递和湍流粘性等。以下是一个基于有限体积法(FVM)的k-epsilon湍流模型的示例代码: ```python # 定义模型参数 k = 0.01 # 初始湍动能 epsilon = 0.01 # 初始湍动粘性 # 定义模型参数方程 def calc_k(du_dx, du_dy, du_dz): # 计算k的变化率 return 1 - epsilon / k * (du_dx**2 + du_dy**2 + du_dz**2) * dt def calc_epsilon(du_dx, du_dy, du_dz): # 计算epsilon的变化率 C_mu = 0.09 # 模型参数 return C_mu * k**2 / epsilon * (du_dx**2 + du_dy**2 + du_dz**2) * dt # 定义有限体积法求解函数 def solve(): # 循环求解每个控制体 for i in range(1, nx-1): for j in range(1, ny-1): for k in range(1, nz-1): # 计算速度的梯度 du_dx = (u[i+1,j,k] - u[i-1,j,k]) / (2*dx) du_dy = (u[i,j+1,k] - u[i,j-1,k]) / (2*dy) du_dz = (u[i,j,k+1] - u[i,j,k-1]) / (2*dz) # 计算模型参数的变化率 dk_dt = calc_k(du_dx, du_dy, du_dz) depsilon_dt = calc_epsilon(du_dx, du_dy, du_dz) # 更新k和epsilon的值 k[i,j,k] += dk_dt epsilon[i,j,k] += depsilon_dt # 主程序 dt = 0.01 # 时间步长 dx = 0.1 # 空间步长 dy = 0.1 dz = 0.1 nx = 10 # 网格数 ny = 10 nz = 10 u = np.zeros((nx,ny,nz)) # 速度场 k = np.zeros((nx,ny,nz)) # 湍动能 epsilon = np.zeros((nx,ny,nz)) # 湍动粘性 # 初始化模型参数 k.fill(0.01) epsilon.fill(0.01) # 模拟时间步长 for t in range(100): # 计算速度场 solve() # 输出结果 print(u) print(k) print(epsilon) ``` 该代码使用Python语言实现,利用有限体积法求解k-epsilon湍流模型的方程,其中使用了numpy库来处理多维数组。该代码只是一个简单的示例,真实的k-epsilon湍流模型会更加复杂,需要考虑更多的物理和数学因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值